Class 10 Exam  >  Class 10 Notes  >  CBSE Sample Papers For Class 10  >  Class 10 Mathematics: CBSE Sample Question Paper (2020-21) (Basic) - 2

Class 10 Mathematics: CBSE Sample Question Paper (2020-21) (Basic) - 2 | CBSE Sample Papers For Class 10 PDF Download

Class X
Mathematics – Basic
Sample Question Paper 2020-21
Max. Marks : 80
Duration : 3 hrs. 
General Instructions : 
1. This question paper contains two parts A and B.
2. Both Part A and Part B have internal choices.
Part – A
1. It consists of two sections- I and II.
2. Section I has 16 question. Internal choice is provided in 5 questions.
3. Section II has four case study-based questions. Each case study has 5 case-based sub-parts. An examinee is to attempt any 4 out of 5 sub-parts.
Part – B
1. Question No 21 to 26 are Very short answer Type questions of 2 marks each.
2. Question No 27 to 33 are Short Answer Type questions of 3 marks each.
3. Question No 34 to 36 are Long Answer Type questions of 5 marks each.
4. Internal choice is provided in 2 questions of 2 marks, 2 questions of 3 marks and 1 question of 5 marks.

Part – A

Section - I

Q.1. Find the sum of the zeroes of the polynomial 2x2 – 8x + 6.  (1 Mark)
Ans. Let p(x) = 2x2 – 8x + 6
∵ sum of zeroes = −coefficient of x / coefficient of x2
= -(-8) / 2 = 8 / 2 = 4.

Q.2. In an A.P., if d = – 4, n = 7, an = 4, then find the value of a.  (1 Mark)
OR
How can 325 can be expressed as a product of its primes?  (1 Mark)
Ans. In the given A.P., d = – 4, n = 7, an = 4
an = a + (n – 1) d
∴ 4 = a + (7 – 1) (– 4) = a – 24
∴ a = 4 + 24.
∴ a = 28.
OR
325 = 5 × 5 × 13
= 52 × 13.

Q.3. Find the distance between the points A (0, 6) and B(0, –2).  (1 Mark)
Ans. The distance between two points (x1, y1) and (x2, y2) is given as :
Class 10 Mathematics: CBSE Sample Question Paper (2020-21) (Basic) - 2 | CBSE Sample Papers For Class 10
Where, x1 = 0, y1 = 6 and x2 = 0, y2 = –2
So, distance between A (0, 6) and B (0, –2)
Class 10 Mathematics: CBSE Sample Question Paper (2020-21) (Basic) - 2 | CBSE Sample Papers For Class 10
Class 10 Mathematics: CBSE Sample Question Paper (2020-21) (Basic) - 2 | CBSE Sample Papers For Class 10
= √82
= 8

Q.4. If the distance between the points (4, p) and (1, 0) is 5, then find the value of p.  (1 Mark)
Ans. By distance formula, distance between two points (x1, y1) and (x2, y2) is given by,
Class 10 Mathematics: CBSE Sample Question Paper (2020-21) (Basic) - 2 | CBSE Sample Papers For Class 10
(x1, y1) = (4, p) and (x2, y2) = (1, 0)
Class 10 Mathematics: CBSE Sample Question Paper (2020-21) (Basic) - 2 | CBSE Sample Papers For Class 10
Class 10 Mathematics: CBSE Sample Question Paper (2020-21) (Basic) - 2 | CBSE Sample Papers For Class 10
Class 10 Mathematics: CBSE Sample Question Paper (2020-21) (Basic) - 2 | CBSE Sample Papers For Class 10
∴ 25 = 9 + p2
p2 = 16 or p = ±4.

Q.5. Evaluate Class 10 Mathematics: CBSE Sample Question Paper (2020-21) (Basic) - 2 | CBSE Sample Papers For Class 10   (1 Mark)
Ans.
Class 10 Mathematics: CBSE Sample Question Paper (2020-21) (Basic) - 2 | CBSE Sample Papers For Class 10 
Class 10 Mathematics: CBSE Sample Question Paper (2020-21) (Basic) - 2 | CBSE Sample Papers For Class 10

Q.6. The tangent at any point of a circle is perpendicular to the .............. through the point of contact.  (1 Mark)
OR
In ΔABC, DE || BC, find the value of x.  (1 Mark)

Class 10 Mathematics: CBSE Sample Question Paper (2020-21) (Basic) - 2 | CBSE Sample Papers For Class 10Ans. The tangent at any point of a circle is perpendicular to the 'RADIUS' through the point of contact.
OR
As DE || BC
∴ AD / DB = AE / EC
or, x / x + 1 = x + 3 / x + 5
or, x2 + 5x = x2 + 4x + 3
or, x = 3

Q.7. Find the 11th term of the A.P. :Class 10 Mathematics: CBSE Sample Question Paper (2020-21) (Basic) - 2 | CBSE Sample Papers For Class 10  (1 Mark)
OR
What is the sum of five positive integers divisible by 6.
Ans. In the given A.P., a = – 3 and d =Class 10 Mathematics: CBSE Sample Question Paper (2020-21) (Basic) - 2 | CBSE Sample Papers For Class 10
Thus, the 11th term is
t11 = -3 + (11 - 1) (5 / 2) = 22
OR
Here, a = 6, d = 6 and n = 5
∵ Sn = n / 2[2a + (n - 1)d]
S5 = 5 / 2 [2 x 6 + (5 - 1)(6)]
= 5 / 2 [ 12 + 4 x 6]
= 5 / 2 [12 + 24]
= 5 x 18 = 90.

Q.8. HCF × LCM = ..................... × (second number).  (1 Mark)
Ans. HCF × LCM = product of two numbers = first number × second number.

Q.9. If the quadratic polynomial is ax2 + bx + c, then find product of zeroes.  (1 Mark)
Ans. If the quadratic polynomial is ax2 + bx + c, then product of zeroes is, α × β = (c x a)

Q.10. In two triangles if the sides of one triangle are proportional to the sides of another triangle, then the two triangles are similar by .................. test of similarity and hence corresponding angles are equal.  (1 Mark)
Ans. SSS (side-side-side) test of similarity.

Q.11. Find the median of the data, using an empirical relation when it is given that Mode = 12.4 and Mean = 10.5.  (1 Mark)
Ans. Median =Class 10 Mathematics: CBSE Sample Question Paper (2020-21) (Basic) - 2 | CBSE Sample Papers For Class 10
Class 10 Mathematics: CBSE Sample Question Paper (2020-21) (Basic) - 2 | CBSE Sample Papers For Class 10
= 12.4 / 3 + 21 / 3
Class 10 Mathematics: CBSE Sample Question Paper (2020-21) (Basic) - 2 | CBSE Sample Papers For Class 10
= 33.4 / 3
= 11.13

Q.12. If two positive integers p and q can be expressed as p = ab2 and q = a3b; a, b being prime numbers, Find LCM of (p, q).  (1 Mark)
OR
Find a quadratic polynomial, whose zeroes are –3 and 4.  (1 Mark)
Ans. P = ab2 = a × b × b and q = a3b = a × a × a × b
Thus, LCM of p and q = a × a × a × b × b = a3b3.
OR
x2 – (α + β)x + αβ = 0
Here, roots of the quadratic polynomial are given as −3 and 4.
∴ Sum of the roots = −3 + 4 = 1
and Product of the roots = −3 × 4 = −12
∴ The quadratic polynomial is = x2 – (α  + β)x + αβ
= x2 – x – 12

Q.13. If the lines given by 3x + 2ky = 2 and 2x + 5y + 1 = 0 are parallel, then find the value of k.  (1 Mark)
Ans. For parallel lines (or no solution)
a1 / a2 = b1 / b2 ≠ c1 / c2
∴ 3 / 2 = 2k / 5 ≠ -2 / 1
∴ 4k = 15 or k = 15 / 4.

Q.14. In Figure, DE || BC. Find the length of side AD, given that AE = 1.8 cm, BD = 7.2 cm and CE = 5.4 cm.  (1 Mark)
Class 10 Mathematics: CBSE Sample Question Paper (2020-21) (Basic) - 2 | CBSE Sample Papers For Class 10Ans. Given DE || BC
∴ AD / BD = AE / CE
⇒ AD / 7.2 = 1.8 / 5.4
Class 10 Mathematics: CBSE Sample Question Paper (2020-21) (Basic) - 2 | CBSE Sample Papers For Class 10
= 2.4 cm.

Q.15. A tangent PQ at a point P of a circle of radius 5 cm meets a line through the centre O at a point Q so that OQ = 12 cm. What is the length of PQ?  (1 Mark)
Ans. We know that the radius is perpendicular to tangent.
Class 10 Mathematics: CBSE Sample Question Paper (2020-21) (Basic) - 2 | CBSE Sample Papers For Class 10

In ΔOPQ, we have ∠P = 90°
By Pythagoras Theorem,
OQ2 = PQ2 + OP2
(12)2 = PQ2 + (5)2
⇒ 144 = PQ2 + 25
⇒ PQ2 = 144 – 25 = 119
⇒ PQ = √119 cm.

Q.16. If area of quadrant of a circle is 38.5 cm2 then find its diameter (use π = 22 / 7)  (1 Mark)
OR
What is the area of the largest square that can be inscribed in a circle of radius 12 cm?  (1 Mark)

Ans. Area of quadrant = 1 / 4 x 22 / 7 x r2 = 38.5  (use π = 22 / 7)
⇒ r = 7 cm
∴ diameter = 14 cm
OR
Radius of the circle= 12 cm.
∴ Diameter of circle = 24 cm.
∴ Diagonal of square = 24 cm
Let the side of square = x cm.
x2 + x2 = (24)2
(By Pythagoras theorem)
Class 10 Mathematics: CBSE Sample Question Paper (2020-21) (Basic) - 2 | CBSE Sample Papers For Class 10or, 2x2 = 24 × 24
or,Class 10 Mathematics: CBSE Sample Question Paper (2020-21) (Basic) - 2 | CBSE Sample Papers For Class 10
Area of square = x2 = 288 cm2.

Section - II

Q.17. Following figure depicts a park where two opposite sides are parallel and left and right ends are semicircular in shape. It has a 7 m wide track for walking. Two friends Seema and Meena went to the park.
Class 10 Mathematics: CBSE Sample Question Paper (2020-21) (Basic) - 2 | CBSE Sample Papers For Class 10

(i)
Question for Class 10 Mathematics: CBSE Sample Question Paper (2020-21) (Basic) - 2
Try yourself:Find the area of outer rectangular portion.  (1 Mark)
View Solution

(ii)
Question for Class 10 Mathematics: CBSE Sample Question Paper (2020-21) (Basic) - 2
Try yourself:What is the area of inner rectangular portion?  (1 Mark)
View Solution

(iii)
Question for Class 10 Mathematics: CBSE Sample Question Paper (2020-21) (Basic) - 2
Try yourself:Find the area of outer semi-circular portion.  (1 Mark)
View Solution

(iv)
Question for Class 10 Mathematics: CBSE Sample Question Paper (2020-21) (Basic) - 2
Try yourself:Find the area of inner semi-circular portion.  (1 Mark)
View Solution

(v)
Question for Class 10 Mathematics: CBSE Sample Question Paper (2020-21) (Basic) - 2
Try yourself:Find the area of track.  (1 Mark)
View Solution


Q.18.
Class 10 Mathematics: CBSE Sample Question Paper (2020-21) (Basic) - 2 | CBSE Sample Papers For Class 10

(i)
Question for Class 10 Mathematics: CBSE Sample Question Paper (2020-21) (Basic) - 2
Try yourself:How  much cloth material will be required to cover 1 big central dome of radius 4.5 meters ? (Take π = 22 / 7)  (1 Mark)
View Solution

(ii)
Question for Class 10 Mathematics: CBSE Sample Question Paper (2020-21) (Basic) - 2
Try yourself:Write the formula to find the volume of a cylindrical pillar.  (1 Mark)
View Solution

(iii)
Question for Class 10 Mathematics: CBSE Sample Question Paper (2020-21) (Basic) - 2
Try yourself:Find  the lateral surface area of two pillars of height of the pillar is 6 m and radius of the base is 1.2 m.  (1 Mark)
View Solution

(iv)
Question for Class 10 Mathematics: CBSE Sample Question Paper (2020-21) (Basic) - 2
Try yourself:How much is the volume of a hemisphere if the radius of the base is 2.5 m?  (1 Mark)
View Solution

(v)
Question for Class 10 Mathematics: CBSE Sample Question Paper (2020-21) (Basic) - 2
Try yourself:Write the formula to find the volume of a hemispherical domes.  (1 Mark)
View Solution


Q.19. To conduct sports day activities in your rectangular shaped school ground ABCD, lines have been drawn with chalk powder at a distance of 1 m each. 100 flower pots have been placed at a distances of 1 m form each other along AD, as shown in figure.
Class 10 Mathematics: CBSE Sample Question Paper (2020-21) (Basic) - 2 | CBSE Sample Papers For Class 10

(i)
Question for Class 10 Mathematics: CBSE Sample Question Paper (2020-21) (Basic) - 2
Try yourself:What is the distance between both the flags?  (1 Mark)
View Solution

(ii)
Question for Class 10 Mathematics: CBSE Sample Question Paper (2020-21) (Basic) - 2
Try yourself:If Rashmi has to post a blue flag exactly half way between the line segment joining the two flags, where should she post her flag?  (1 Mark)
View Solution

(iii)
Question for Class 10 Mathematics: CBSE Sample Question Paper (2020-21) (Basic) - 2
Try yourself:Write the distance formula between points (2, 5) and (5, 9).  (1 Mark)
View Solution

(iv)
Question for Class 10 Mathematics: CBSE Sample Question Paper (2020-21) (Basic) - 2
Try yourself:Write the mid points for points (a, b) and (3a, 3b).  (1 Mark)
View Solution

(v)
Question for Class 10 Mathematics: CBSE Sample Question Paper (2020-21) (Basic) - 2
Try yourself:If Niharika runs 1 / 10th the distance of AD on the 3rd line, and post the yellow flag, what will the coordinates of flag posted?  (1 Mark)
View Solution


Q.20. Form a point P on the ground the angle of elevation of the top of a 10 m tall building is 30°. A flag is hoisted at the top of the building and angle of elevation of the top of the flagstaff from P is 45°.
Class 10 Mathematics: CBSE Sample Question Paper (2020-21) (Basic) - 2 | CBSE Sample Papers For Class 10

(i)
Question for Class 10 Mathematics: CBSE Sample Question Paper (2020-21) (Basic) - 2
Try yourself:Find the length of flagstaff.   (1 Mark)
View Solution

(ii)
Question for Class 10 Mathematics: CBSE Sample Question Paper (2020-21) (Basic) - 2
Try yourself:Find the distance of the building from the point P.   (1 Mark)
View Solution

(iii)
Question for Class 10 Mathematics: CBSE Sample Question Paper (2020-21) (Basic) - 2
Try yourself:What is the value of tan 30°?  (1 Mark)
View Solution

(iv)
Question for Class 10 Mathematics: CBSE Sample Question Paper (2020-21) (Basic) - 2
Try yourself:What is the value of tan 45°?  (1 Mark)
View Solution

(v) 
Question for Class 10 Mathematics: CBSE Sample Question Paper (2020-21) (Basic) - 2
Try yourself:Write the Pythagoras theorem for ΔAPB.  (1 Mark)
View Solution

Part - B

All questions are compulsory. In case of internal choices, attempt anyone.

Q.21. Find the zeroes of the quadratic polynomial √3x2 – 8x + 4√3.  (2 Mark)
Ans. Let p (x) = √3x2 – 8x + 4√3
∴ p (x) = 0
√3x2 – 6x – 2x + 4√3 = 0
√3x (x – 2√3 ) – 2(x – 2√3 ) = 0
( √3x – 2) (x – 2√3 ) = 0
x = 2 / √3 or 2√3
∴ Zeroes are 2 / √3 and 2√3.

Q.22. Find the value of k, for which the quadratic equation 4x2 + 4√3x + k = 0 has equal roots.  (2 Mark)
Ans. 
An equation has equal roots if the discriminant b2 – 4ac = 0
In the given equation
4x2 + 4√3 x + k = 0, a = 4, b = 4√3 , c = k
∴ Discriminant = (4√3)2 – 4 (4)(k) = 0
48 – 16k = 0
16k = 48 or k = 3.

Q.23. Find how many integers between 200 and 500 are divisible by 8.  (2 Mark)
Ans. Integers divisible by 8 are 208, 216, 224, ......, 496.
This is an A.P.
Given, a = 208, d = 8 and an = 496 (last term)
Let the numbers of terms in A.P. be n.
∵ an = a + (n – 1)d
∴ 208 + (n – 1) 8 = 496
(n – 1) 8 = 496 – 208
n – 1 = 288 ÷ 8
∴ n – 1 = 36
n = 36 + 1 or n = 37
Hence, required integers divisible by 8 = 37.

Q.24. Find the ratio in which the segment joining the points (1, – 3) and (4, 5) is divided by x-axis ? Also find the coordinates of this point on x-axis.  (2 Mark)
Ans.
Let the required point be P(a, 0) and required ratio AP : PB = k : 1
Class 10 Mathematics: CBSE Sample Question Paper (2020-21) (Basic) - 2 | CBSE Sample Papers For Class 10
∴ a = 4K + 1 / K + 1
and 0 = 5K - 3 / K + 1
⇒ K = 3 / 5 or required ratio is 3 : 5
Class 10 Mathematics: CBSE Sample Question Paper (2020-21) (Basic) - 2 | CBSE Sample Papers For Class 10
Point P is (17 / 8, 0)

Q.25. Evaluate :Class 10 Mathematics: CBSE Sample Question Paper (2020-21) (Basic) - 2 | CBSE Sample Papers For Class 10  (2 Mark)
OR
If two coins are tossed simultaneously. Find the probability of getting 2 heads.  (2 Mark)
Ans.
Class 10 Mathematics: CBSE Sample Question Paper (2020-21) (Basic) - 2 | CBSE Sample Papers For Class 10 
Class 10 Mathematics: CBSE Sample Question Paper (2020-21) (Basic) - 2 | CBSE Sample Papers For Class 10
Class 10 Mathematics: CBSE Sample Question Paper (2020-21) (Basic) - 2 | CBSE Sample Papers For Class 10
= 1 + 3 + 2 – 1 = 5
OR
Two coins are tossed simultaneously.
Total outcomes = {HH, HT, TH, TT}
Favourable outcomes (exactly 2 heads) = {HH}
Probability = Favorable number of outcomes / Total number of outcomes
= 1 / 4

Q.26. Find the mode of the following frequency distribution  (2 Mark)
Class 10 Mathematics: CBSE Sample Question Paper (2020-21) (Basic) - 2 | CBSE Sample Papers For Class 10
OR
Prove that the tangents drawn at the ends of a diameter of a circle are parallel.   (2 Mark)

Ans.
Class 10 Mathematics: CBSE Sample Question Paper (2020-21) (Basic) - 2 | CBSE Sample Papers For Class 10
Here, modal-class = 35 – 40
Now, l = 35, f1 = 50, f0 = 34, f2 = 42, h = 5
Mode = Class 10 Mathematics: CBSE Sample Question Paper (2020-21) (Basic) - 2 | CBSE Sample Papers For Class 10
Class 10 Mathematics: CBSE Sample Question Paper (2020-21) (Basic) - 2 | CBSE Sample Papers For Class 10
Class 10 Mathematics: CBSE Sample Question Paper (2020-21) (Basic) - 2 | CBSE Sample Papers For Class 10
Class 10 Mathematics: CBSE Sample Question Paper (2020-21) (Basic) - 2 | CBSE Sample Papers For Class 10
Class 10 Mathematics: CBSE Sample Question Paper (2020-21) (Basic) - 2 | CBSE Sample Papers For Class 10
OR
Class 10 Mathematics: CBSE Sample Question Paper (2020-21) (Basic) - 2 | CBSE Sample Papers For Class 10∠OLA = 90°
∠OMD = 90°
∠OLA= ∠OMD
OLA and OMD are alternate pair of angles for the lines AB, CD and transversal LM.
∴ Tangent AB || Tangent CD.

All questions are compulsory. In case of internal choices, attempt anyone.
Q.27.  144 cartons of Coke cans and 90 cartons of Pepsi cans are to be stacked in a canteen. If each stack is of the same height and if it contain equal cartons of the same drink, what would be the greatest number of cartons each stack would have?  (3 Mark)
Ans. Since, the greatest number of cartons is the HCF of 144 and 90
144 = 24 × 32
90 = 2 × 32 × 5
Therefore, HCF = 2 × 32 = 18
Thus the greatest number of cartons = 18.

Q.28. Determine an A.P. whose third term is 9 and when fifth term is subtracted from 8th term, we get 6.  (3 Mark)
OR
Find two consecutive positive integers sum of whose squares is 365.  (3 Mark)

Ans. Let the first term be a and the common difference be d.

Given, a3 = 9 or, a + 2d = 9 ....(i)
and a8 – a5 = 6
or, (a + 7d) – (a + 4d) = 6
or, 3d = 6
or, d = 2 ....(ii)
Substituting the value of d in equation (i), we get
or, a + 2(2) = 9
or, a = 5
So, A.P. is 5, 7, 9, 11, .....
OR
Let two consecutive positive integers be x and x + 1.
∴ x2 + (x + 1)2 = 365
⇒ x2 + x – 182 = 0
(x + 14)(x – 13) = 0
∴ x = 13
Hence, two consecutive positive integers are 13 and 14.

Q.29. Find the point on y-axis which is equidistant from the points (5, –2) and (–3, 2).  (3 Mark)
Ans.
Let the required point on y-axis be (0, b)
∴ (5 – 0)2 + (–2 – b)2 = (–3 – 0)2 + (2 – b)2
⇒ 29 + 4b + b2 = 13 + b2 – 4b
⇒ b = – 2
∴ Required point is (0, –2)

Q.30. In given figure, PQ is a chord of length 8 cm of a circle of radius 5 cm and centre O. The tangents at P and Q intersect at point T. Find the length of TP.  (3 Mark)
Class 10 Mathematics: CBSE Sample Question Paper (2020-21) (Basic) - 2 | CBSE Sample Papers For Class 10OR
In the figure given below, ∠BAC = 90 and AD ⊥ BC, then prove that : BD × CD = AD
2  (3 Mark)
Class 10 Mathematics: CBSE Sample Question Paper (2020-21) (Basic) - 2 | CBSE Sample Papers For Class 10Ans. Join OT and OQ.
TP = TQ
∴ TM ⊥ PQ and bisects PQ
Hence, PM = 4 cm
Therefore, OM =Class 10 Mathematics: CBSE Sample Question Paper (2020-21) (Basic) - 2 | CBSE Sample Papers For Class 10
Class 10 Mathematics: CBSE Sample Question Paper (2020-21) (Basic) - 2 | CBSE Sample Papers For Class 10Let TM = x
From ΔPMT,
PT2 = x2 + 16
From ΔPOT,
PT2 = (x + 3)2 – 25
Hence
x2 + 16 = x2 + 9 + 6x – 25

⇒ 6x = 32 ⇒ x = 16 / 3
HenceClass 10 Mathematics: CBSE Sample Question Paper (2020-21) (Basic) - 2 | CBSE Sample Papers For Class 10
∴ PT = 20 / 3 cm
OR
In ΔABD and ΔCAD,
∠ADB = ∠ADC = 90°
Suppose ∠ABD = θ then
∠BAD = 90° – θ
But ∠A = 90°,
∴ ∠CAD = θ
Thus ∠ABD = ∠CAD
By AA similarity, we get
ΔABD ∼ ΔCAD
⇒ AD / BD = CD / AD
i.e., BD × CD = AD2
Hence Proved

Q.31. If 4 tan θ = 3, evaluateClass 10 Mathematics: CBSE Sample Question Paper (2020-21) (Basic) - 2 | CBSE Sample Papers For Class 10  (3 Mark)
Ans. 
Class 10 Mathematics: CBSE Sample Question Paper (2020-21) (Basic) - 2 | CBSE Sample Papers For Class 10 Given, 4 tan θ = 3
⇒ tan θ = 3 / 4
∴ In right triangle ABC,
tan θ = 3 / 4 = AB / BC
⇒  AB = 3x, BC = 4x
Class 10 Mathematics: CBSE Sample Question Paper (2020-21) (Basic) - 2 | CBSE Sample Papers For Class 10
[Using Pythagoras theorem]
Class 10 Mathematics: CBSE Sample Question Paper (2020-21) (Basic) - 2 | CBSE Sample Papers For Class 10
= √25x2 = 5x
∴ sin θ = AB / AC = 3x / 5x = 3 / 5
cos θ = BC / AC = 4x / 5x = 4 / 5
Class 10 Mathematics: CBSE Sample Question Paper (2020-21) (Basic) - 2 | CBSE Sample Papers For Class 10
Class 10 Mathematics: CBSE Sample Question Paper (2020-21) (Basic) - 2 | CBSE Sample Papers For Class 10
= 13 / 11

Q.32. Find the mode of the following frequency distribution.  (3 Mark)
Class 10 Mathematics: CBSE Sample Question Paper (2020-21) (Basic) - 2 | CBSE Sample Papers For Class 10
Ans.
Class 10 Mathematics: CBSE Sample Question Paper (2020-21) (Basic) - 2 | CBSE Sample Papers For Class 10
Modal-class =30 – 40
⇒ l = 30, f= 10, f1 = 16, f2 = 12, h = 10
Mode =Class 10 Mathematics: CBSE Sample Question Paper (2020-21) (Basic) - 2 | CBSE Sample Papers For Class 10
Class 10 Mathematics: CBSE Sample Question Paper (2020-21) (Basic) - 2 | CBSE Sample Papers For Class 10
Class 10 Mathematics: CBSE Sample Question Paper (2020-21) (Basic) - 2 | CBSE Sample Papers For Class 10
Class 10 Mathematics: CBSE Sample Question Paper (2020-21) (Basic) - 2 | CBSE Sample Papers For Class 10
= 30+6
= 36.

Q.33. A box consists of 100 shirts of which 88 are good, 8 have minor defects and 4 have major defects. Ramesh, a shopkeeper will buy only those shirts which are good but ‘Kewal’ another shopkeeper will not buy shirts with major defects. A shirt is taken out of the box at random. What is the probability that:   (3 Mark)
(i) Ramesh will buy the selected shirt ?
(ii) ‘Kewal ‘ will buy the selected shirt ?

Ans. (i) Number of good shirts = 88
P (Ramesh buys good shirts) = 88 / 100 or 22 / 25
(ii) Number of shirts without major defect = 96
P (Kewal buys defected shirts) = 96 / 100 or 24 / 25

All questions are compulsory. In case of internal choices, attempt anyone.

Q.34. Find the value of a, b and c such that the numbers a, 7, b, 23 and c are in A.P.  (5 Mark)
Ans. Since, a, 7, b, 23 and c are in A.P.
Let the common difference be d
∴ a + d = 7 .....(i)
and a + 3d = 23 .....(ii)
From (i) and (ii), we get
a = – 1 and d = 8
Again, b = a + 2d
b = – 1 + 2 × 8
or, b = – 1 + 16
or, b = 15
∴ c = a  + 4d
= – 1 + 4 × 8
= – 1 + 32
c = 31
∴ a = – 1, b = 15 and c = 31.

Q.35. Find the coordinates of the point which divide the line segment joining A(4, – 3) and B(– 4, – 6) into three equal parts.  (5 Mark)
Ans. Let P(x1, y1) and Q(x2, y2) are two points which divide AB in three equal parts.
P divides AB in the ratio of 1 : 2 and Q divides AB in the ratio 2 : 1.
By section formula
Class 10 Mathematics: CBSE Sample Question Paper (2020-21) (Basic) - 2 | CBSE Sample Papers For Class 10
P(x1, y1) =Class 10 Mathematics: CBSE Sample Question Paper (2020-21) (Basic) - 2 | CBSE Sample Papers For Class 10
Class 10 Mathematics: CBSE Sample Question Paper (2020-21) (Basic) - 2 | CBSE Sample Papers For Class 10
Class 10 Mathematics: CBSE Sample Question Paper (2020-21) (Basic) - 2 | CBSE Sample Papers For Class 10
Q(x2, y2) = Class 10 Mathematics: CBSE Sample Question Paper (2020-21) (Basic) - 2 | CBSE Sample Papers For Class 10
Class 10 Mathematics: CBSE Sample Question Paper (2020-21) (Basic) - 2 | CBSE Sample Papers For Class 10
Class 10 Mathematics: CBSE Sample Question Paper (2020-21) (Basic) - 2 | CBSE Sample Papers For Class 10

Q.36. Draw two concentric circles of radii 2 cm and 5 cm. Take a point P on the outer circle and construct a pair of tangents PA and PB to the smaller circle. Measure PA.  (5 Mark)
OR
A copper rod of diameter 1 cm and length 8 cm is drawn into a wire of length 18 m of uniform thickness. Find the thickness of wire.  (5 Mark)

Ans. Steps of construction
1. Draw a circle with radius 2 cm and centre at O.
2. Draw another circle with radius 5 cm and same centre O.
3. Take a point P on the circumference of outer circle and join O to P.
4. Taking OP as diameter draw another circle which intersects the smallest circle at A and B.
5. Join A to P and B to P
Class 10 Mathematics: CBSE Sample Question Paper (2020-21) (Basic) - 2 | CBSE Sample Papers For Class 10

Hence, PA and PB are the required tangent.
Measure of PA = Class 10 Mathematics: CBSE Sample Question Paper (2020-21) (Basic) - 2 | CBSE Sample Papers For Class 10
OR
According to question,
Class 10 Mathematics: CBSE Sample Question Paper (2020-21) (Basic) - 2 | CBSE Sample Papers For Class 10
⇒ r2 = 1 / 900
⇒ r = 1 / 30
⇒ Thickness of wire = 1 / 15 cm.

The document Class 10 Mathematics: CBSE Sample Question Paper (2020-21) (Basic) - 2 | CBSE Sample Papers For Class 10 is a part of the Class 10 Course CBSE Sample Papers For Class 10.
All you need of Class 10 at this link: Class 10
303 docs|7 tests

Top Courses for Class 10

FAQs on Class 10 Mathematics: CBSE Sample Question Paper (2020-21) (Basic) - 2 - CBSE Sample Papers For Class 10

1. What is the importance of solving sample question papers for the CBSE Class 10 Mathematics exam?
Ans. Solving sample question papers is important for the CBSE Class 10 Mathematics exam as it helps students familiarize themselves with the exam pattern, question types, and time management. It also provides them an opportunity to practice and assess their understanding of various concepts, helping them identify their strengths and weaknesses.
2. How can solving sample question papers help in improving exam performance?
Ans. Solving sample question papers can help improve exam performance by enhancing students' problem-solving skills, time management, and confidence. It allows them to identify the areas where they need to focus more, revise concepts, and practice different types of questions. Regular practice of sample papers also helps in reducing exam anxiety and increasing familiarity with the exam format.
3. Are the CBSE sample question papers representative of the actual exam difficulty level?
Ans. Yes, the CBSE sample question papers are designed to be representative of the actual exam difficulty level. They are prepared by subject experts and follow the CBSE curriculum and guidelines. However, it is important to note that the difficulty level of the actual exam may vary slightly. Nevertheless, practicing sample papers gives students a good understanding of the expected level of difficulty and helps them prepare accordingly.
4. Can solving sample question papers alone guarantee success in the CBSE Class 10 Mathematics exam?
Ans. While solving sample question papers is an essential part of exam preparation, it alone cannot guarantee success in the CBSE Class 10 Mathematics exam. Along with practicing sample papers, students should also focus on understanding the concepts, revising the entire syllabus, and solving additional reference books or previous year question papers. Regular study, self-assessment, and seeking help from teachers whenever required are also important factors in achieving success.
5. How should one approach solving sample question papers effectively for the CBSE Class 10 Mathematics exam?
Ans. To approach solving sample question papers effectively for the CBSE Class 10 Mathematics exam, students should start by familiarizing themselves with the question paper format and marking scheme. They should allocate time properly for each section and attempt the questions in a systematic manner. It is advisable to solve the easier questions first to build confidence and then move on to the more challenging ones. After solving the paper, students should analyze their performance, identify the mistakes, and work on improving them. Regular practice of sample papers along with proper revision of concepts will help in achieving better results.
303 docs|7 tests
Download as PDF
Explore Courses for Class 10 exam

Top Courses for Class 10

Signup for Free!
Signup to see your scores go up within 7 days! Learn & Practice with 1000+ FREE Notes, Videos & Tests.
10M+ students study on EduRev
Related Searches

pdf

,

Class 10 Mathematics: CBSE Sample Question Paper (2020-21) (Basic) - 2 | CBSE Sample Papers For Class 10

,

Class 10 Mathematics: CBSE Sample Question Paper (2020-21) (Basic) - 2 | CBSE Sample Papers For Class 10

,

MCQs

,

Semester Notes

,

Objective type Questions

,

mock tests for examination

,

study material

,

Extra Questions

,

Sample Paper

,

shortcuts and tricks

,

practice quizzes

,

Summary

,

video lectures

,

Important questions

,

past year papers

,

Exam

,

Free

,

Viva Questions

,

Previous Year Questions with Solutions

,

ppt

,

Class 10 Mathematics: CBSE Sample Question Paper (2020-21) (Basic) - 2 | CBSE Sample Papers For Class 10

;