Semiconductors - 1 | Electronic Devices - Electronics and Communication Engineering (ECE) PDF Download

Introduction

Electronic Devices: It is the branch of physics that deals with the emission and effects of electrons emission and effects of electrons and the use of electronic devices.
Electronic Circuits: Components are connected together to create an electronic circuit with a particular function. Active components are sometimes called devices.

Semiconductors - 1 | Electronic Devices - Electronics and Communication Engineering (ECE)Semiconductor Materials

  • The term conductor is applied to any material that will support a generous flow of charge when a voltage source of limited magnitude is applied across its terminals.
  • An insulator is a material that offers a very low level of conductivity under pressure from an applied voltage source.
  • A semiconductor, therefore, is a material that has a conductivity level somewhere between the extremes of an insulator and conductor.
  • Band Theory: A bonding of atoms, strengthened by the sharing of electrons, is called covalent bonding. In the crystal, closely spaced energy levels form a band called as energy band. Each orbit has a separate energy band. A band of energy levels associated with valence shells is called as valence band. Electrons from other bands cannot be removed but electrons from valence band can be removed by supplying a little energy. The conduction band is generally empty. The valence band and conduction band are separated by a gap called forbidden energy gap.
  • Compound Semiconductors: Such as Gallium Arsenide (GaAs), Cadmium Sulphide (CdS), Gallium Arsenide Phosphide (GaAsP), Gallium Nitride (GaN) are constructed by two or more semiconductor materials of different atomic structures are called compound semiconductors.

Intrinsic Semiconductors

  • At 0oK, no free carriers are available, Si behaves as an insulator.
  • At room temperature, a few covalent bonds will be broken by the thermal energy, electron‐hole pair generation as free carriers.
  • Both electrons and holes are free to move, can contribute to current conduction
    Semiconductors - 1 | Electronic Devices - Electronics and Communication Engineering (ECE)

Extrinsic Semiconductor

  • Extrinsic (doped) semiconductor = intrinsic semiconductor + impurities
  • According to the species of impurities, the extrinsic semiconductor can be either n‐type or p‐type.

n‐type semiconductor

  • The donor impurities have 5 valence electrons are added into silicon.
  • P, As Sb, are commonly used as a donor.
  • The Si atom is replaced by a donor atom.
  • Donor ions are bounded in the lattice structure and thus donate free electrons without contributing holes.
  • By adding donor atoms into an intrinsic semiconductor, the number of electrons increases (n > p) → n‐type semiconductor.
  • Majority carrier: electron.
  • Minority carrier: hole
    Semiconductors - 1 | Electronic Devices - Electronics and Communication Engineering (ECE)

p‐type semiconductor

  • The acceptor impurity has 3 valence electron (Boron).
  • Th Si atom is replaced by an acceptor atom.
  • The boron lacks one valence electron. It leaves a vacancy in the bond structure.
  • This vacancy can accept electron at the expense of creating a new vacancy.
  • Acceptor creates a hole without contributing free electron.
  • By adding acceptor into an intrinsic semiconductor, the number of holes increase (p > n) → p‐type semiconductor.
  • Majority carrier: hole.
  • Minority carrier: electron

Properties of Semiconductor Materials

Various materials are classified based on the width of forbidden energy gap. In metal, there is no forbidden gap and valence and conduction band are overlapped. In an insulator, the forbidden gap is very large up to 7eV while in semiconductors it is up to 1eV. The silicon and germanium are widely used semiconductors. Intrinsic materials are those semiconductor that has been carefully refined to reduce the impurities to a very level-essentially' as pure as can be made available through modern technology.

  • The conductivity of an intrinsic semiconductor is very less. The properties like conductivity can be changed by adding an impurity to the intrinsic semiconductor. The process of adding impurity is called doping.
  • A semiconductor doped with trivalent impurity atoms forms p-type material. It is called acceptor impurity with concentration NA atoms per unit volume.
  • A semiconductor doped with pentavalent impurity atoms forms n-type material. It is called donor impurity with concentration ND atoms per unit volume.
  • In p-type, holes are majority carriers and in n-type electrons are majority carriers.
  • When a material is subjected to an electric field, electrons move in a particular direction with steady speed called drift speed and current drift current.

Negative Temperature Coefficient: Those parameters decreasing with the temperature have a negative temperature coefficient, e.g., an energy gap (Eg).
where, constant β0 = 2.2 × 10–4 (for Ge)
= 3.6 × 10–4 (for Si)
Semiconductors - 1 | Electronic Devices - Electronics and Communication Engineering (ECE)
Mobility (μ), μ ∝ T–m
Positive Temperature Coefficient: Those parameters increasing with temperature have a positive temperature coefficient.

Important Terms

  • Drift velocity Vd = μE
  • Current density J = nq μE
  • Conductivity σ = nq μ
  • Concentration of free electrons per unit volume n = dU/AM
  • Semiconductor conductivity σ = (nμn + pμp)q
  • In intrinsic semiconductor, n = p = ni Hence, conductivity σi = nin + μp)q Intrinsic concentration ni = A0T3eSemiconductors - 1 | Electronic Devices - Electronics and Communication Engineering (ECE)
  • In extrinsic semiconductor, the conductivity is given by, For n-type, σn = (nnμn + pnμp)q For p-type, σn = (npμn + ppμp)q But in n-type pn < < nn  ND = Concentration of donor impurity   NA = Concentration of acceptor impurity   np = Number of electrons (concentration) in p-type   Pp = Number of holes (concentration) in p-type and nn ≅ ND while in p-type   np < < pp and pp ≅ NA Hence, conductivity can be calculated as,   σn = NDμnq and σp = NAμpq
  • Mass-action law np = ni2

In n-type, nnpn = ni2 , hence Semiconductors - 1 | Electronic Devices - Electronics and Communication Engineering (ECE)
In p-type, ppnp = ni2, hence Semiconductors - 1 | Electronic Devices - Electronics and Communication Engineering (ECE)

The document Semiconductors - 1 | Electronic Devices - Electronics and Communication Engineering (ECE) is a part of the Electronics and Communication Engineering (ECE) Course Electronic Devices.
All you need of Electronics and Communication Engineering (ECE) at this link: Electronics and Communication Engineering (ECE)
21 docs|29 tests

FAQs on Semiconductors - 1 - Electronic Devices - Electronics and Communication Engineering (ECE)

1. What is a semiconductor?
Ans. A semiconductor is a type of material that has electrical conductivity between that of a conductor and an insulator. It can be used to control the flow of electrical current in electronic devices.
2. How are semiconductors used in electronics?
Ans. Semiconductors are used in electronics to create components such as diodes, transistors, and integrated circuits. These components are essential for the functioning of various electronic devices, including computers, smartphones, and televisions.
3. What are the properties of semiconductors?
Ans. Semiconductors have several important properties, including their ability to conduct electricity under certain conditions, their sensitivity to temperature, and their ability to be doped with impurities to modify their electrical characteristics.
4. What is the difference between a conductor and a semiconductor?
Ans. The main difference between a conductor and a semiconductor is their ability to conduct electricity. Conductors have high conductivity and allow the flow of current with little resistance, while semiconductors have moderate conductivity and can be controlled to allow or block the flow of current.
5. How are semiconductors manufactured?
Ans. Semiconductors are manufactured through a complex process called semiconductor fabrication or semiconductor manufacturing. It involves several steps, including crystal growth, wafer fabrication, deposition of various layers, doping, lithography, and packaging. This process requires specialized equipment and cleanroom facilities to ensure the quality and reliability of the semiconductors produced.
21 docs|29 tests
Download as PDF

Top Courses for Electronics and Communication Engineering (ECE)

Related Searches

pdf

,

Viva Questions

,

ppt

,

Important questions

,

Extra Questions

,

Semiconductors - 1 | Electronic Devices - Electronics and Communication Engineering (ECE)

,

study material

,

Sample Paper

,

Semester Notes

,

practice quizzes

,

MCQs

,

past year papers

,

Objective type Questions

,

Previous Year Questions with Solutions

,

Semiconductors - 1 | Electronic Devices - Electronics and Communication Engineering (ECE)

,

Summary

,

mock tests for examination

,

shortcuts and tricks

,

Exam

,

Free

,

Semiconductors - 1 | Electronic Devices - Electronics and Communication Engineering (ECE)

,

video lectures

;