Class 8 Exam  >  Class 8 Notes  >  Mathematics (Maths) Class 8  >  Sum of the Measures of the Exterior Angles of a Polygon

Sum of the Measures of the Exterior Angles of a Polygon | Mathematics (Maths) Class 8 PDF Download

Polygon

Polygon is a closed, connected shape made of straight lines. It may be a flat or a plane figure spanned across two-dimensions. A polygon is an enclosed figure that can have more than 3 sides. The lines forming the polygon are known as the edges or sides and the points where they meet are known as vertices. The sides that share a common vertex among them are known as adjacent sides. The angle enclosed within the adjacent side is called the interior angle and the outer angle is called the exterior angle.
Sum of the Measures of the Exterior Angles of a Polygon | Mathematics (Maths) Class 8

Exterior Angle

An exterior angle basically is formed by the intersection of any of the sides of a polygon and extension of the adjacent side of the chosen side. Interior and exterior angles formed within a pair of adjacent sides form a complete 180 degrees angle.
Sum of the Measures of the Exterior Angles of a Polygon | Mathematics (Maths) Class 8

Measures of Exterior Angles

  • They are formed on the outer part, that is, the exterior of the angle.
  • The corresponding sum of the exterior and interior angle formed on the same side = 180°.
  • The sum of all the exterior angles of the polygon is independent of the number of sides and is equal to 360 degrees, because it takes one complete turn to cover polygon in either clockwise or anti-clockwise direction.
  • If we have a regular polygon of n sides, the measure of each exterior angle
    = (Sum of all exterior angles of polygon)/n
    = (360 degree)/n

Sum of the Measures of the Exterior Angles of a Polygon | Mathematics (Maths) Class 8

Theorem for Exterior Angles Sum of a Polygon

If we observe a convex polygon, then the sum of the exterior angle present at each vertex will be 360°. Following Theorem will explain the exterior angle sum of a polygon:
Proof:
Let us consider a polygon which has n number of sides. The sum of the exterior angles is N.
The sum of exterior angles of a polygon(N) =
Difference between {the sum of the linear pairs (180n)} – {the sum of the interior angles
(180(n – 2))}
N = 180n − 180(n – 2)    
N = 180n − 180n + 360
N = 360            
Hence, we have the sum of the exterior angle of a polygon is 360°.             

Sample Problems on Exterior Angles

Example 1: Find the exterior angle marked with x. 
Sum of the Measures of the Exterior Angles of a Polygon | Mathematics (Maths) Class 8

Solution:
Since the sum of exterior angles is 360 degrees, the following properties hold:
∠1 + ∠2 + ∠3 + ∠4 + ∠5 = 360°
50° + 75° + 40° + 125° + x = 360°
x = 360°

Example 2: Determine each exterior angle of the quadrilateral.
Sum of the Measures of the Exterior Angles of a Polygon | Mathematics (Maths) Class 8

Solution: Since, it is a regular polygon, measure of each exterior angle
=          360°          
Number of sides
=   360°  
       4
= 90° 

Example 3: Find the regular polygon where each of the exterior angle is equivalent to 60 degrees.
Solution: Since it is a regular polygon, the number of sides can be calculated by the sum of all exterior angles, which is 360 degrees divided by the measure of each exterior angle.
Number of sides = Sum of all exterior angles of a polygon 
                                                         n
Value of one pair of side = 360 degree 
                                                          60 degree
                                                       = 6
Therefore, this is a polygon enclosed within 6 sides, that is hexagon.

Example 4: Find the interior angles ‘x, y’, and exterior angles ‘w, z’ of this polygon? 
Sum of the Measures of the Exterior Angles of a Polygon | Mathematics (Maths) Class 8

Solution:
Here we have ∠DAC = 110° that is an exterior angle and ∠ACB = 50° that is an interior angle.
Firstly we have to find interior angles ‘x’ and ‘y’.
∠DAC + ∠x = 180°  {Linear pairs}
110°  + ∠x = 180°  
∠x = 180° – 110°  
∠x = 70°  
Now,
∠x + ∠y + ∠ACB = 180° {Angle sum property of a triangle}
70°+ ∠y + 50° = 180°  
∠y + 120° = 180°
∠y = 180° – 120°
∠y = 60°
Secondly now we can find exterior angles ‘w’ and ‘z’.
∠w + ∠ACB = 180° {Linear pairs}
∠w + 50° = 180°
∠w = 180° – 50°
∠w = 130°
Now we can use the theorem exterior angles sum of a polygon,
∠w + ∠z  + ∠DAC = 360° {Sum of exterior angle of a polygon is 360°}
130° + ∠z + 110° = 360°
240° + ∠z = 360°
∠z = 360° – 240°
∠z = 120° 

The document Sum of the Measures of the Exterior Angles of a Polygon | Mathematics (Maths) Class 8 is a part of the Class 8 Course Mathematics (Maths) Class 8.
All you need of Class 8 at this link: Class 8
81 videos|423 docs|31 tests

FAQs on Sum of the Measures of the Exterior Angles of a Polygon - Mathematics (Maths) Class 8

1. What is the sum of the measures of the exterior angles of a polygon?
Ans. The sum of the measures of the exterior angles of any polygon, regardless of the number of sides, is always 360 degrees.
2. How do you calculate an individual exterior angle of a regular polygon?
Ans. To calculate an individual exterior angle of a regular polygon, you can use the formula: \( \text{Exterior Angle} = \frac{360}{n} \), where \( n \) is the number of sides of the polygon.
3. Why do the exterior angles of a polygon always add up to 360 degrees?
Ans. The exterior angles of a polygon always add up to 360 degrees because each time you extend a side of the polygon, the exterior angle formed with the adjacent side measures the angle that turns around the vertex, completing a full circle of 360 degrees.
4. Can the sum of the exterior angles of a polygon be different for different types of polygons?
Ans. No, the sum of the exterior angles of a polygon is always 360 degrees, irrespective of whether the polygon is regular or irregular.
5. How does the sum of the exterior angles relate to the interior angles of a polygon?
Ans. The sum of the exterior angles of a polygon is related to the interior angles in that each exterior angle is supplementary to its corresponding interior angle. The relationship remains that the sum of all exterior angles is always 360 degrees, while the sum of the interior angles varies with the number of sides.
Related Searches

Summary

,

MCQs

,

Important questions

,

Sum of the Measures of the Exterior Angles of a Polygon | Mathematics (Maths) Class 8

,

Sample Paper

,

Exam

,

practice quizzes

,

Sum of the Measures of the Exterior Angles of a Polygon | Mathematics (Maths) Class 8

,

Previous Year Questions with Solutions

,

past year papers

,

Free

,

Viva Questions

,

shortcuts and tricks

,

study material

,

Extra Questions

,

Semester Notes

,

Sum of the Measures of the Exterior Angles of a Polygon | Mathematics (Maths) Class 8

,

video lectures

,

ppt

,

mock tests for examination

,

pdf

,

Objective type Questions

;