Grade 10 Exam  >  Grade 10 Notes  >  Mathematics for Grade 10  >  HCF - Highest Common Factor

HCF - Highest Common Factor | Mathematics for Grade 10 PDF Download

The Highest Common Factor (HCF) of two numbers is the highest possible number that divides both the numbers completely. The Highest Common Factor (HCF) is also called the Greatest Common Divisor (GCD).
There are many ways to find the HCF of two numbers. One of the quickest ways to find the HCF of two or more numbers is by using the prime factorization method. Explore the world of HCF by going through its various aspects and properties. Find answers to questions like what is the highest common factor for a group of numbers, easy ways to calculate HCF, HCF by division method, its relation with LCM, and discover more interesting facts around them.

HCF Definition

The HCF (Highest Common Factor) of two or more numbers is the highest number among all the common factors of the given numbers. In simple words, the HCF (Highest Common Factor) of two natural numbers x and y is the largest possible number that divides both x and y. Let us understand this definition using two numbers, 18 and 27. The common factors of 18 and 27 are 1, 3, and 9. Among these numbers, 9 is the highest (largest) number. So, the HCF of 18 and 27 is 9. This is written as: HCF (18, 27) = 9. Observe the following figure to understand this concept.
HCF - Highest Common Factor | Mathematics for Grade 10

HCF Examples

Using the above definition, the HCF of a few set of numbers can be listed as follows:

  • HCF of 60 and 40 is 20, i.e., HCF (60, 40) = 20
  • HCF of 100 and 150 is 50, i.e., HCF (150, 50) = 50
  • HCF of 144 and 24 is 24, i.e., HCF (144, 24) = 24
  • HCF of 17 and 89 is 1, i.e., HCF (17, 89) = 1

How to Find HCF?

There are many ways to find the highest common factor of the given numbers. Irrespective of the method, the answer to the HCF of the numbers would always be the same. There are 3 methods to calculate the HCF of two numbers:

  • HCF by listing factors method
  • HCF by prime factorization
  • HCF by division method

HCF by Listing Factors Method

In this method, we list the factors of each number and find the common factors of those numbers. Then, among the common factors, we determine the highest common factor. Let us understand this method using an example.

Example: Find the HCF of 30 and 42.
Solution: We will list the factors of 30 and 42.
The factors of 30 are 1, 2, 3, 5, 6, 10, 15, and 30 and the factors of 42 are 1, 2, 3, 6, 7, 14, 21, and 42.
Clearly, 1, 2, 3, and 6 are the common factors of 30 and 42.
But 6 is the greatest of all the common factors.
Hence, the HCF of 30 and 42 is 6.

HCF by Prime Factorization

In order to find the HCF of numbers by the prime factorization method, we use the following steps. Let us understand this method using the example given below.

  • Step 1: Find the common prime factors of the given numbers.
  • Step 2: Then, multiply these common prime factors to obtain the HCF of those numbers.

Example: Find the HCF of 60 and 90.
Solution: 
The prime factors of 60 = 2 × 2 × 3 × 5; and the prime factors of 90 = 2 × 3 × 3 × 5.
Now, the HCF of 60 and 90 will be the product of the common prime factors, which are, 2, 3, and 5.
So, HCF of 60 and 90 = 2 × 3 × 5 = 30

HCF by Division Method

The HCF of two numbers can be calculated using the division method. Let us understand this using the following steps and the example given below.

  • Step 1: In this method, we divide the larger number by the smaller number and check the remainder.
  • Step 2: Then, we make the remainder of the previous step as the new divisor; and the divisor of the previous step becomes the new dividend. After this we perform the long division again.
  • Step 3: We continue the long division process till we get the remainder as 0. It should be noted that the last divisor will be the HCF of those two numbers.

Example: Find the HCF of 198 and 360 using the division method.
Solution: Let us find the HCF of the given numbers using the following steps

  • Step 1: Among the two given numbers, 360 is the larger number, and 198 is the smaller number.
  • Step 2: We divide 360 by 198 and check the remainder. Here, the remainder is 162. Make the remainder 162 as the new divisor and the previous divisor 198 as the new dividend and perform the long division again.
  • Step 3: We will continue this process till we get the remainder as 0. Here, the last divisor is 18 which is the HCF of 198 and 360.

HCF - Highest Common Factor | Mathematics for Grade 10

HCF of Multiple Numbers

The method to find the HCF of multiple numbers is the same when we use the 'listing factors method' and 'the prime factorization method'. However, while using the division method, there is a slight change in the case of multiple numbers. Let us learn how to find the HCF of three numbers using the division method.

HCF of Three Numbers

In order to find the HCF of three numbers, we use the following procedure. Let us understand this using the steps and the example given below.

  • Step 1: First, find the HCF of the largest and the smallest of the given numbers.
  • Step 2: Then, find the HCF of the third number and the HCF obtained from the first two numbers in the previous step.
  • Step 3: This gives the HCF of the three numbers.

Example: Find the HCF of 126, 162, and 180.
Solution:
First, we will find the HCF of the two numbers 126 and 180.
The HCF of 126 and 180 = 18.
Then, we will find the HCF of the third number, which is 162, and the HCF of the two numbers obtained in the previous step, that is, 18.
This will give the final HCF of all the three numbers.
HCF - Highest Common Factor | Mathematics for Grade 10

Therefore, HCF of 126, 162 and 180 = 18

HCF of Four Numbers

To find the HCF of four numbers, we use the following steps.

  • Step 1: First, we will find the HCF of the two pairs of numbers separately.
  • Step 2: Then, we will find the HCF of the HCFs that were calculated in the previous step.

HCF of Prime Numbers

We know that a prime number has only two factors, 1 and the number itself. Let us consider two prime numbers 2 and 7, and find their HCF by listing their factors. The factors of 2 = 1, 2; and the factors of 7 = 1, 7. We can see that the only common factor of 2 and 7 is 1. Hence, the HCF of prime numbers is always equal to 1.

Properties of HCF

We already know that the HCF of a and b is the highest common factor of the numbers a and b. Let us have a look at the important properties of HCF:
The properties of HCF are given below.

  • The HCF of two or more numbers divides each of the numbers without a remainder.
  • The HCF of two or more numbers is a factor of each of the numbers.
  • The HCF of two or more numbers is always less than or equal to each of the numbers.
  • The HCF of two or more prime numbers is 1 always.

Relation Between LCM and HCF

The HCF of two or more numbers is the highest common factor of the given numbers. It is found by multiplying the common prime factors of the given numbers. Whereas the Least Common Multiple (LCM) of two or more numbers is the smallest number among all common multiples of the given numbers. Let us assume 'a' and 'b' are the two numbers. Therefore, the formula that expresses the relationship between their LCM and HCF is given as:
LCM (a, b) × HCF (a, b) = a × b
Let us understand this relationship with an example.

Example: Let us find the HCF and LCM of 6 and 8 to understand their relationship.
Solution: The HCF of 6 and 8 = 2; The LCM of 6 and 8 = 24; The product of the two given numbers is 6 × 8 = 48.
So, let us substitute these values in the formula that explains the relationship between the LCM and HCF of two numbers.
On substituting the values in the formula, LCM (a,b) × HCF (a,b) = a × b, we get, 24 × 2 = 48.

The document HCF - Highest Common Factor | Mathematics for Grade 10 is a part of the Grade 10 Course Mathematics for Grade 10.
All you need of Grade 10 at this link: Grade 10
138 videos|67 docs|41 tests

Top Courses for Grade 10

138 videos|67 docs|41 tests
Download as PDF
Explore Courses for Grade 10 exam

Top Courses for Grade 10

Signup for Free!
Signup to see your scores go up within 7 days! Learn & Practice with 1000+ FREE Notes, Videos & Tests.
10M+ students study on EduRev
Related Searches

HCF - Highest Common Factor | Mathematics for Grade 10

,

Viva Questions

,

Important questions

,

shortcuts and tricks

,

Previous Year Questions with Solutions

,

Exam

,

Sample Paper

,

pdf

,

mock tests for examination

,

video lectures

,

past year papers

,

Semester Notes

,

Summary

,

ppt

,

Extra Questions

,

MCQs

,

study material

,

Objective type Questions

,

Free

,

HCF - Highest Common Factor | Mathematics for Grade 10

,

HCF - Highest Common Factor | Mathematics for Grade 10

,

practice quizzes

;