Q1: The cost of 2 kg of apples and 1kg of grapes on a day was found to be Rs.160. After a month, the cost of 4 kg of apples and 2 kg of grapes is Rs.300. Represent the situation algebraically.
View AnswerSol:
Let the cost of 1 kg of apples be ‘Rs. x’.
And, let the cost of 1 kg of grapes be ‘Rs. y’.
According to the question, the algebraic representation is
2x + y = 160
And 4x + 2y = 300
For, 2x + y = 160 or y = 160 − 2x, the solution table is;
For 4x + 2y = 300 or y = (300 – 4x)/ 2, the solution table is;
Q2: Half the perimeter of a rectangular garden, whose length is 4 m more than its width, is 36 m. Find the dimensions of the garden.
View AnswerSol:
Given, half the perimeter of a rectangular garden = 36 m
so, 2(l + b)/2 = 36
(l + b) = 36 ……….(1)
Given, the length is 4 m more than its width.
Let width = x
And length = x + 4
Substituting this in eq(1), we get;
x + x + 4 = 36
2x + 4 = 36
2x = 32
x = 16
Therefore, the width is 16 m and the length is 16 + 4 = 20 m.
Q3: On comparing the ratios a1/a2, b1/b2, and c1/c2, find out whether the following pair of linear equations are consistent, or inconsistent.
(i) 3x + 2y = 5 ; 2x – 3y = 7
(ii) 2x – 3y = 8 ; 4x – 6y = 9
Sol:
(i) Given : 3x + 2y = 5 or 3x + 2y – 5 = 0
and 2x – 3y = 7 or 2x – 3y – 7 = 0
Comparing the above equations with a1x + b1y + c1=0
And a2x + b2y + c2 = 0
We get,
a1 = 3, b1 = 2, c1 = -5
a2 = 2, b2 = -3, c2 = -7
a1/a2 = 3/2, b1/b2 = 2/-3, c1/c2 = -5/-7 = 5/7
Since, a1/a2≠b1/b2 the lines intersect each other at a point and have only one possible solution.
Hence, the equations are consistent.
(ii) Given 2x – 3y = 8 and 4x – 6y = 9
Therefore,
a1 = 2, b1 = -3, c1 = -8
a2 = 4, b2 = -6, c2 = -9
a1/a2 = 2/4 = 1/2, b1/b2 = -3/-6 = 1/2, c1/c2 = -8/-9 = 8/9
Since, a1/a2=b1/b2≠c1/c2
Therefore, the lines are parallel to each other and they have no possible solution. Hence, the equations are inconsistent.
Q4: Solve the following pair of linear equations by the substitution method.
(i) x + y = 14
x – y = 4
(ii) 3x – y = 3
9x – 3y = 9
Sol:
(i) Given,
x + y = 14 and x – y = 4 are the two equations.
From 1st equation, we get,
x = 14 – y
Now, put the value of x in second equation to get,
(14 – y) – y = 4
14 – 2y = 4
2y = 10
Or y = 5
By the value of y, we can now find the value of x;
∵ x = 14 – y
∴ x = 14 – 5
Or x = 9
Hence, x = 9 and y = 5.
(ii) Given,
3x – y = 3 and 9x – 3y = 9 are the two equations.
From 1st equation, we get,
x = (3 + y)/3
Now, substitute the value of x in the given second equation to get,
9[(3 + y)/3] – 3y = 9
⇒ 3(3+y) – 3y = 9
⇒ 9 + 3y – 3y = 9
⇒ 9 = 9
Therefore, y has infinite values and since, x = (3 + y)/3, so x also has infinite values.
Q5: Solve 2x + 3y = 11 and 2x – 4y = – 24 and hence find the value of ‘m’ for which y = mx + 3.
View AnswerSol:
2x + 3y = 11…………………………..(i)
2x – 4y = -24………………………… (ii)
From equation (i), we get;
x = (11 – 3y)/2 ……….…………………………..(iii)
Putting the value of x in equation (ii), we get
2[(11 – 3y)/2] – 4y = −24
11 – 3y – 4y = -24
-7y = -35
y = 5……………………………………..(iv)
Putting the value of y in equation (iii), we get;
x = (11 – 15)/2 = -4/2 = −2
Hence, x = -2, y = 5
Also,
y = mx + 3
5 = -2m +3
-2m = 2
m = -1
Therefore, the value of m is -1.
Q6: The coach of a cricket team buys 7 bats and 6 balls for Rs.3800. Later, she buys 3 bats and 5 balls for Rs.1750. Find the cost of each bat and each ball.
View AnswerSol:
Let the cost of a bat be x and the cost of a ball be y.
According to the question,
7x + 6y = 3800 ………………. (i)
3x + 5y = 1750 ………………. (ii)
From (i), we get;
y = (3800 – 7x)/6 …………………… (iii)
Substituting (iii) in (ii). we get,
3x + 5[(3800 – 7x)/6] = 1750
⇒3x + (9500/3) – (35x/6) = 1750
3x – (35x/6) = 1750 – (9500/3)
(18x – 35x)/6 = (5250 – 9500)/3
⇒-17x/6 = -4250/3
⇒-17x = -8500
x = 500
Putting the value of x in (iii), we get;
y = (3800 – 7 × 500)/6 = 300/6 = 50
Hence, the cost of a bat is Rs 500 and the cost of a ball is Rs 50.
Q7: A fraction becomes 9/11 if 2 is added to both the numerator and the denominator. If, 3 is added to both the numerator and the denominator it becomes 5/6. Find the fraction.
View AnswerSol:
Let the fraction be x/y.
According to the question,
(x + 2)/(y + 2) = 9/11
11x + 22 = 9y + 18
11x – 9y = -4 …………….. (1)
(x + 3)/(y + 3) = 5/6
6x + 18 = 5y +15
6x – 5y = -3 ………………. (2)
From (1), we get
x = (-4 + 9y)/11 …………….. (3)
Substituting the value of x in (2), we get
6[(-4 + 9y)/11] – 5y = -3
-24 + 54y – 55y = -33
-y = -9
y = 9 ………………… (4)
Substituting the value of y in (3), we get
x = (-4 + 81)/11 = 77/11 = 7
Hence, the fraction is 7/9.
Q8: Form the pair of linear equations in the following problems, and find their solutions (if they exist) by the elimination method:
(i) Five years ago, Nuri was thrice as old as Sonu. Ten years later, Nuri will be twice as old as Sonu. How old are Nuri and Sonu?
Sol:
Let us assume, the present age of Nuri be x.
And the present age of Sonu is y.
According to the given condition, we can write as;
x – 5 = 3(y – 5)
x – 3y = -10…………………………………..(1)
Now,
x + 10 = 2(y +10)
x – 2y = 10…………………………………….(2)
Subtract eq. 1 from 2, to get,
y = 20 ………………………………………….(3)
Substituting the value of y in eq.1, we get,
x – 3(20) = -10
x – 60 = -10
x = 50
Therefore,
The age of Nuri is 50 years
The age of Sonu is 20 years.
(ii) A lending library has a fixed charge for the first three days and an additional charge for each day thereafter. Saritha paid Rs.27 for a book kept for seven days, while Susy paid Rs.21 for the book she kept for five days. Find the fixed charge and the charge for each extra day.
View AnswerSol:
Let the fixed charge for the first three days be Rs. A and the charge for each day extra be Rs. B.
According to the information given,
A + 4B = 27 …………………………………….…………………………. (i)
A + 2B = 21 ……………………………………………………………….. (ii)
When equation (ii) is subtracted from equation (i) we get,
2B = 6
B = 3 …………………………………………………………………………(iii)
Substituting B = 3 in equation (i) we get,
A + 12 = 27
A = 15
Hence, the fixed charge is Rs. 15.
And the Additional charge per day is Rs. 3.
Q9: Solve the following pair of linear equations by the substitution :
8x + 5y = 9
3x + 2y = 4
Sol:
8x + 5y = 9 …………………..(1)
3x + 2y = 4 ……………….….(2)
From equation (2) we get;
x = (4 – 2y) / 3 ……………………. (3)
Substituting this value in equation 1, we get
8[(4 – 2y)/3] + 5y = 9
32 – 16y + 15y = 27
-y = -5
y = 5 ……………………………….(4)
Substituting this value in equation (2), we get
3x + 10 = 4
3x = -6
x = -2
Thus, x = -2 and y = 5.
Q10: Formulate the following problems as a pair of equations, and hence find their solutions:
(i) Ritu can row downstream 20 km in 2 hours, and upstream 4 km in 2 hours. Find her speed of rowing in still water and the speed of the current.
Sol:
Let us consider,
Speed of boat is still water = x km/hr
Speed of current = y km/hr
Now, speed of Ritu, during,
Downstream = x + y km/hr
Upstream = x – y km/hr
As per the question given,
2(x + y) = 20
Or x + y = 10……………………….(1)
And, 2(x – y) = 4
Or x – y = 2………………………(2)
Adding both the eq.1 and 2, we get,
2x = 12
x = 6
Putting the value of x in eq.1, we get,
y = 4
Therefore,
Speed of Ritu is still water = 6 km/hr
Speed of current = 4 km/hr
Q11: Do the following pair of the given linear equations have no solution? Explain your answer.
(i) 2x + 4y = 3
12y + 6x = 6
(ii) x = 2y
y = 2x
(iii) 3x + y – 3 = 0
2x + 2/3y = 2
Sol:
The given condition for no solution = a1/a2 = b1/b2 ≠ c1/c2 (parallel lines)
(i) Yes.
Given that the pair of the equations are,
2x+4y – 3 = 0 as well as 6x + 12y – 6 = 0
On comparing the equations with ax+ by +c = 0;
We have,
a1 = 2, b1 = 4, c1 = – 3;
a2 = 6, b2 = 12, c2 = – 6;
a1 /a2 = 2/6 = 1/3
b1 /b2 = 4/12 = 1/3
c1 /c2 = – 3/ – 6 = ½
Where, a1/a2 = b1/b2 ≠ c1/c2, that is parallel lines
Therefore, the given pair of the linear equations has no solution.
(ii) No.
Given that the pair of the equations,
x = 2y or x – 2y = 0
y = 2x or 2x – y = 0;
On comparing the equations with ax+ by +c = 0;
We have,,
a1 = 1, b1 = – 2, c1 = 0;
a2 = 2, b2 = – 1, c2 = 0;
a1 /a2 = ½
b1 /b2 = -2/-1 = 2
Where, a1/a2 ≠ b1/b2.
Therefore, the given pair of the linear equations has a unique solution.
(iii) No.
Given that the pair of the equations,
3x + y – 3 = 0
2x + 2/3 y = 2
On comparing the equations with ax+ by +c = 0;
We have,
a1 = 3, b1 = 1, c1 = – 3;
a2 = 2, b2 = 2/3, c2 = – 2;
a1 /a2 = 2/6 = 3/2
b1 /b2 = 4/12 = 3/2
c1 /c2 = – 3/-2 = 3/2
Where, a1/a2 = b1/b2 = c1/c2, that is coincident lines
Q12: Find the value(s) of k so that the pair of equations x + 2y = 5 and 3x + ky + 15 = 0 has a unique solution.
View AnswerSol:
Given,
x + 2y = 5
3x + ky + 15 = 0
Also, given that the pair of equations has a unique solution.
Comparing the given equations with standard form,
a1 = 1, b1 = 2, c1 = -5
a2 = 3, b2 = k, c2 = 15
Condition for unique solution is:
a1/a2 ≠ b1/b2
1/3 ≠ 2/k
k ≠ (2)(3)
k ≠ 6
Thus, for all real values of k except 6, the given pair of equations has a unique solution.
Q13: For which values of a and b, would the following pair of the given linear equations consist of infinitely many solutions?
x + 2y = 1
(a – b)x + (a + b)y = a + b – 2
Sol:
The given pair of the linear equations are as follows:
x + 2y = 1 ……(1)
(a-b)x + (a + b)y = a + b – 2 …..(2)
When we compare with ax + by = c = 0 we have,
a1 = 1, b1 = 2, c1 = – 1
a2 = (a – b), b2 = (a + b), c2 = – (a + b – 2)
a1 /a2 = 1/(a-b)
b1 /b2 = 2/(a+b)
c1 /c2 = 1/(a+b-2)
For infinitely many solutions, the pair of the given linear equations will,
a1/a2 = b1/b2=c1/c2 (here, coincident lines)
Thus, 1/(a-b) = 2/ (a+b) = 1/(a+b-2)
Taking the given first two parts,
1/(a-b) = 2/ (a+b)
a + b = 2(a – b)
a = 3b …(iii)
Taking the given last two parts,
2/ (a+b) = 1/(a+b-2)
2(a + b – 2) = (a + b)
a + b = 4 …(iv)
Also, putting the value of a from Eq. (iii) in Eq. (iv), we have,
3b + b = 4
4b = 4
b = 1
Putting the value for b in Eq. (iii), we get
a = 3
Thus, the values for (a,b) = (3,1) satisfies all the given parts. Thus, the required values of a and b are 3 and 1 respectively, and the given pair of the linear equations has infinitely many solutions.
Q14: Use elimination method to find all possible solutions of the following pair of linear equation:
2x + 3y = 8
4x + 6y = 7
Sol:
Given,
2x + 3y = 8….(i)
4x + 6y = 7….(ii)
Multiply Equation (1) by 2 and Equation (2) by 1 to make the coefficients of x equal.
4x + 6y = 16….(iii)
4x + 6y = 7….(iv)
Subtracting (iv) from (iii),
4x + 6y – 4x – 6y = 16 – 7
0 = 9, it is not possible
Therefore, the pair of equations has no solution.
Q15: Solve the following pairs of equations by reducing them to a pair of linear equations:
12x + 13y = 2
13x + 12y = 136
View AnswerSol: Given equations:
12x + 13y = 2
13x + 12y = 136
Let 1x = m and 1y = n.
The equations become:
m2 + n3 = 2
m3 + n2 = 136
Multiply the equations to remove fractions:
3m + 2n = 12
2m + 3n = 13
Using elimination method:
m = 2, n = 3
Substitute back:
1x = 2, so x = 12
1y = 3, so y = 13
Final Answer: x = 12, y = 13
126 videos|457 docs|75 tests
|
1. What is a linear equation in two variables? |
2. How can we find the solution of a linear equation in two variables? |
3. What is the graphical representation of a linear equation in two variables? |
4. Can a linear equation in two variables have no solutions? |
5. What are the different forms of linear equations in two variables? |
|
Explore Courses for Class 10 exam
|