NEET Exam  >  NEET Notes  >  Physics Class 12  >  Chapter Notes: Moving Charges and Magnetism

Moving Charges and Magnetism Chapter Notes | Physics Class 12 - NEET PDF Download

Both electricity and magnetism have been known for more than 200 years. However, their relationship was discovered only 200 years ago. Hans Christian Oersted in 1820 discovered that a straight wire carrying current caused deflection in the magnetic compass needle. 

From here, started the discoveries in the field of 'electromagnetism', which we are going to study in detail in this document. 

Oersted Experiment: Observations and Conclusion

To learn about moving charges and magnetism, we need to understand the significant experiment performed by a Danish Physicist, Hans Christian Oersted in 1820. 

When a magnet is pointed to the compass needle, the needle moves.When a magnet is pointed to the compass needle, the needle moves.

  • He observed accidentally that, a current in a straight wire caused a noticeable deflection in a nearby magnetic compass needle. 
  • He found that the alignment of the needle is tangential to an imaginary circle which has the straight wire as its centre and has its plane perpendicular to the wire. Reversing the direction of the current reverses the orientation of the needle.
  • The deflection increases on increasing the current or bringing the needle closer to the wire.
  • Oersted concluded that moving charges or currents produced a magnetic field in the surrounding space.

Moving Charges and Magnetism Chapter Notes | Physics Class 12 - NEET

Observation
Question for Chapter Notes: Moving Charges and Magnetism
Try yourself:
What did Hans Christian Oersted observe during his experiment?
View Solution

Magnetic Field, Magnetic Force, and Lorentz Force

  • A magnetic field is like an invisible area around something that's magnetic. It helps us understand how the magnetic force spreads around the object.
  • When an electric charge or current moves close to a magnet, it creates a magnetic field. Tiny particles, like electrons with a negative charge, move around and make this magnetic field. 
  • These fields can start inside the atoms of magnetic things or in wires that have electricity flowing through them.

Magnetic Field is a region of space around a magnet or current-carrying conductor or a moving charge in which its magnetic effect can be felt.

  • A magnetic field depicts how a moving charge flows around a magnetic object. Magnetic force is a force that arises due to the interaction of magnetic fields. It can be either a repulsive or attractive force.
  • Let us suppose that there is a point charge q (moving with a velocity v and, located at r at a given time t) in the presence of both the electric field E (r) and constant magnetic field B (r).

Moving Charges and Magnetism Chapter Notes | Physics Class 12 - NEET

  • The force on an electric charge q due to both of them can be written as: 

Moving Charges and Magnetism Chapter Notes | Physics Class 12 - NEET

  • This force was given first by H.A. Lorentz based on the extensive experiments of Ampere and others. It is called the Lorentz force.

Question for Chapter Notes: Moving Charges and Magnetism
Try yourself:
What is a magnetic field?
View Solution

Biot-Savart's Law

Biot-Savart’s law is an equation that gives the magnetic field produced due to a current-carrying segment. This segment is taken as a vector quantity known as the current element.

  • The magnetic field dB due to this element is to be determined at a point P which is at a distance r from it. Let θ be the angle between dl and the displacement vector r
  • According to Biot-Savart’s law, the magnitude of the magnetic field dB is proportional to the current I, the element length |dl|, and inversely proportional to the square of the distance r. Its direction* is perpendicular to the plane containing dl and r.

Magnetic filed due to a current elementMagnetic filed due to a current element

Moving Charges and Magnetism Chapter Notes | Physics Class 12 - NEET
Also, Moving Charges and Magnetism Chapter Notes | Physics Class 12 - NEETwhereMoving Charges and Magnetism Chapter Notes | Physics Class 12 - NEET  is the drift velocity of the charge.
where μ0 = 4π × 10–7 TmA–1.
Direction of dB: The direction of magnetic field is given by the right-hand thumb rule as shown in the image below.Right-hand thumb ruleRight-hand thumb rule


Magnetic Field due to Circular Current-Carrying Coil

Moving Charges and Magnetism Chapter Notes | Physics Class 12 - NEETB = μ0NI a2/2(a2 + x2)3/2

or,    Moving Charges and Magnetism Chapter Notes | Physics Class 12 - NEET
N =  total number of turns
a = coil radius
The direction of  Moving Charges and Magnetism Chapter Notes | Physics Class 12 - NEETis given by Right-hand screw rule.
Right-hand screw ruleIf the direction of rotation of the right-handed screw-head is the direction of current in a circular conductor then the direction of its advance is the direction of the magnetic field. This is applicable even if the current, and magnetic field are interchanged, as in the case of current flowing through a straight conductor.
Derivation:
Moving Charges and Magnetism Chapter Notes | Physics Class 12 - NEET
Let for a particular angle, the position of small length element dl is given by its coordinates as
Moving Charges and Magnetism Chapter Notes | Physics Class 12 - NEET
Now, Moving Charges and Magnetism Chapter Notes | Physics Class 12 - NEET , 
Moving Charges and Magnetism Chapter Notes | Physics Class 12 - NEET
Also, we haveMoving Charges and Magnetism Chapter Notes | Physics Class 12 - NEET

Moving Charges and Magnetism Chapter Notes | Physics Class 12 - NEET
If number of turns of coil are N, then 
Moving Charges and Magnetism Chapter Notes | Physics Class 12 - NEET

Magnetic Field At The Centre Of A Circular Coil

B = μ0NI / 2a Moving Charges and Magnetism Chapter Notes | Physics Class 12 - NEET

Magnetic Field At The Centre Of A Circular Arc Carrying Current

Moving Charges and Magnetism Chapter Notes | Physics Class 12 - NEET
Moving Charges and Magnetism Chapter Notes | Physics Class 12 - NEETMoving Charges and Magnetism Chapter Notes | Physics Class 12 - NEET
where θ is in radian.
In this case, the direction of the magnetic field is into the page.


Ampere's Circuital Law

The line integral of the magnetic field across a closed loop is equal to 40 times the net correct inside the loop
i.e. Moving Charges and Magnetism Chapter Notes | Physics Class 12 - NEET
where I  is the net current inside the loop.
  • The direction of the magnetic field at a point on one side of a conductor of any shape is equal in magnitude but opposite in direction of the field at an equidistant point on the other side of the conductor.
  • If the magnetic field at a point due to a conductor of any shape is Bo if it is placed in vacuum then the magnetic field at the same point in a medium of relative permeability μis given byMoving Charges and Magnetism Chapter Notes | Physics Class 12 - NEET.
  • If the distance between the point and an infinitely long conductor is decreased (or increased) by K-times then the magnetic field at the point increases (or decreases) by K-times.
  • The magnetic field at the center of a circular coil of a radius smaller than another similar coil with a greater radius is more than that of the latter.
  • For two circular coils of radii R1 and R2 have the same current and the same number of turns,Moving Charges and Magnetism Chapter Notes | Physics Class 12 - NEETwhere B1 and B2 are the magnetic fields at their centers.
  • The magnetic field at a point outside a thick straight wire carrying current is inversely proportional to the distance but the magnetic field at a point inside the wire is directly proportional to the distance.
Question for Chapter Notes: Moving Charges and Magnetism
Try yourself:
What is the principle of a moving coil galvanometer?
View Solution

Applications of Ampere's Circuital Law 

Moving Charges and Magnetism Chapter Notes | Physics Class 12 - NEET

Moving Charges and Magnetism Chapter Notes | Physics Class 12 - NEET

Magnetic Field in a Solenoid

Magnetic Field in Solenoid depends on various factors such as the number of turns per unit length, the current strength in the coil, and the permeability of the material used in the solenoid. The magnetic field of a solenoid is given by the formula:

B = μoIN/L

where,

  • μo is the permeability constant with a value of 1.26 × 10−6 T/m,
  • N is the number of turns in the solenoid,
  • I is the current passing through the coil,
  • L is the coil length.

Moving Charges and Magnetism Chapter Notes | Physics Class 12 - NEET

Note: The magnetic field in a solenoid is maximum when the length of the solenoid is greater than the radius of its loops.

Force on a Conductor in Magnetic Field

The force on a conductor is given by 
F = BIl sin α 
Force on a conductor in Magnetic FieldForce on a conductor in Magnetic Field
where, 
l is the length of the conductor in meters; 
B is the flux density of the field in tesla (Wb/m2); 
I is the current in ampere and 
α is the angle that the conductor makes with the direction of the field.
Special case :
If α = 90°, then  F = BIl
The direction of the force is given by Fleming's left-hand rule.


Torque on a coil in Magnetic Field

The torque acting on a rectangular coil placed with its plane parallel to a uniform magnetic field of flux density B is given by
τ = BINA
where N is the number of turns in the coil, A is the area and I is the current.
If the plane of the coil makes an angle α with the direction of the field, then 
τ = BINA cos α

Moving Charges and Magnetism Chapter Notes | Physics Class 12 - NEET

Force Acting on a Charged Particle in a Uniform Magnetic Field

Consider a positively charged particle that is moving in a uniform magnetic field. Then, the magnitude of the force (magnetic force) is directly proportional to the magnitude of the charge, the component of the velocity that is acting perpendicular to the direction of this field, and the magnitude of the generated magnetic field.

Force acting on a charged particleForce acting on a charged particle

Moving Charges and Magnetism Chapter Notes | Physics Class 12 - NEET

Here,  q is the magnitude of the charge, vsinθ is the component of the velocity that is acting perpendicular to the direction of the magnetic field and the B is the magnitude of the applied magnetic field.

F=kqvB sinθ

Here, k is the proportionality constant, whose value is equal to the 1 (k=1). Thus,

F=qvB sinθ

In vector form,

F=qv × B

This is the required expression for the force acting on a moving charge in a uniform magnetic field. There are two cases, for the magnetic force value:

1. Velocity and magnetic field are parallel – In this equation, if the velocity and magnetic field are parallel, then the angle made between the velocity and the magnetic field is zero. This representation of the magnetic force acting on a moving charge in a uniform magnetic field can be expressed as follows.

           F=qvB sin θ

2. Velocity or the speed and magnetic field are normal – In case the speed of a particle which is charged becomes normal to the magnetic field. Then, the angle made between them will be equal to 90°. Thus,

F=qvB sin(90)

F=qvB(1)

Fmax=qvB

Maximum force is acting on a moving charge in a uniform magnetic field in this case.

           F=qvB(0)

           F=0

There is no force in this case.

Moving Coil Galvanometer

The moving coil galvanometer was first devised by Kelvin and later modified by D'Arsonval. This is used for the detection and measurement of small electric currents. 
Principle
The principle of a moving coil galvanometer is based on the fact that when a current-carrying coil is placed in a magnetic field, it experiences a torque.
Construction
A moving coil ballistic galvanometer is shown in the figure: 
Moving Coil GalvanometerMoving Coil Galvanometer
  • It essentially consists of a rectangular coil PQRS or a cylindrical coil of a large number of turns of fine insulated wire wound over a non-conducting frame of ivory or bamboo. 
  • This coil is suspended by means of phosphor bronze wire between the pole pieces of a powerful horseshoe magnet NS. The poles of the magnet are curved to make the field radial. The lower end of the coil is attached to a spring of phosphor-bronze wire. 
  • The spring and the free ends of the phosphor bronze wire are joined to two terminals T2 and T1 respectively on the top of the case of the instrument. L is a soft iron core. A small mirror M is attached to the suspension wire. 
  • Using lamp and scale arrangement, the deflection of the coil can be recorded. The whole arrangement is enclosed in a non-metallic case.
Theory
Let the coil be suspended freely in the magnetic field.
Suppose, n = number of turns in the coil
A = area of the  coil
B = magnetic field induction of radial magnetic field in which the coil is suspended.
Here, the magnetic field is radial, i.e.,  the plane of the coil always remains parallel to the direction of the magnetic field, and hence the torque acting on the coil
τ = niAB … (1)
  • Due to this torque, the coil rotates. As a result, the suspension wire gets twisted. Now a restoring torque is developed in the suspension wire. 
  • The coil will rotate till the deflecting torque acting on the coil due to the flow of current through it is balanced by the restoring torque developed in the suspension wire due to twisting. 
  • Let C be the restoring couple for a unit twist in the suspension wire and θ be the angle through which the coil has turned. The couple for this twist θ is Cθ.
    In equilibrium, deflecting couple = restoring couple
    ∴   ni AB = Cθ  or  i = Cθ/ (nAB)
    or i = Kθ (where C/nAB = K) … (2)
    K is a constant for a galvanometer and is known as a galvanometer constant.
    Hence Moving Charges and Magnetism Chapter Notes | Physics Class 12 - NEET
    Therefore, the deflection produced in the galvanometer is directly proportional to the current flowing through it.
    Current sensitivity of the galvanometer: The current sensitivity of a galvanometer is defined as the deflection produced in the galvanometer when a unit current is passed through it.
    We know that, niAB = Cθ
     Current sensitivity is = 
    where C = restoring couple per unit twist
    The SI unit of current sensitivity is radian per ampere or deflection per ampere.
    Voltage sensitivity of the galvanometer : The voltage sensitivity of the galvanometer is defined as the deflection produced in the galvanometer when a unit voltage is applied across the terminals of the galvanometer.
     Voltage sensitivityMoving Charges and Magnetism Chapter Notes | Physics Class 12 - NEET,  
    If R is the resistance of the galvanometer and a current is passed through it, then V = iR
     Voltage sensitivity, Vs = Moving Charges and Magnetism Chapter Notes | Physics Class 12 - NEET
    The SI unit of voltage sensitivity is radian per ampere or deflection per ampere.
    Conditions for sensitivity: A galvanometer is said to be more sensitive if it shows a large deflection even for a small value of current.
    We know that, 
    For a given value of i, θ will be large if (i) n is large, (ii) A is large, (iii) B is large, and (iv) C is small.
    Regarding the above factors, n, and A cannot be increased beyond a certain limit. By increasing n, the resistance of the galvanometer will increase and by increasing A, the size of the galvanometer will increase. So, the sensitivity will decrease. Therefore, B is increased. The value of B can be increased by using a strong horseshoe magnet. Further, the value of C can be decreased. The value of C for quartz and phosphor-bronze is very small. So, the suspension wire of quartz or phosphor-bronze is used. The value of C is further decreased if the wire is hammered into a flat strip.

    Summary

  • If in a coil the current is clockwise, it acts as a south pole. If the current is anticlockwise, it acts as a north pole.
    Moving Charges and Magnetism Chapter Notes | Physics Class 12 - NEET
  • No magnetic field occurs at points P, Q, and R due to a thin current elementMoving Charges and Magnetism Chapter Notes | Physics Class 12 - NEET .
    Moving Charges and Magnetism Chapter Notes | Physics Class 12 - NEET
  • Magnetic field intensity in a thick current-carrying conductor at any point x is:
    Moving Charges and Magnetism Chapter Notes | Physics Class 12 - NEET
    Moving Charges and Magnetism Chapter Notes | Physics Class 12 - NEET
    Moving Charges and Magnetism Chapter Notes | Physics Class 12 - NEET
    Moving Charges and Magnetism Chapter Notes | Physics Class 12 - NEET

  • Graph of magnetic field B versus x:
    Moving Charges and Magnetism Chapter Notes | Physics Class 12 - NEET
    • No force acts on a charged particle if it enters a magnetic field in a direction parallel or antiparallel to the field.
    • A finite force acts on a charged particle if it enters a uniform magnetic field in a direction with a finite angle with the field.
    • If two charged particles of masses m1and m2 and charges qand qare projected in a uniform magnetic field with the same constant velocity in a direction perpendicular to the field then the ratio of their radii (R1: R2) is given by
    Moving Charges and Magnetism Chapter Notes | Physics Class 12 - NEET
    • The force on a conductor carrying current in a magnetic field is directly proportional to the current, the length of the conductor, and the magnetic field.
    • If the distance between the two parallel conductors is decreased (or increased) by k-times then the force between them increases (or decreases) k-times.
    • The momentum of the charged particle moving along the direction of the magnetic field does not change, since the force acting on it due to the magnetic field is zero.
    • Lorentz force between two charges q1 and q2 moving with velocity v1, v2 separated by distance r is given by
    Moving Charges and Magnetism Chapter Notes | Physics Class 12 - NEET
    • If the charges move, the electric as well as magnetic fields are produced. In case the charges move with speeds comparable to the speed of light, magnetic and electric force between them would become comparable.
    • A current-carrying coil is in stable equilibrium if the magnetic dipole momentMoving Charges and Magnetism Chapter Notes | Physics Class 12 - NEET is parallel to  Moving Charges and Magnetism Chapter Notes | Physics Class 12 - NEET and is in unstable equilibrium when Moving Charges and Magnetism Chapter Notes | Physics Class 12 - NEET is antiparallel to Moving Charges and Magnetism Chapter Notes | Physics Class 12 - NEET.
    • The magnetic moment is independent of the shape of the loop. It depends on the area of the loop.
    • A straight conductor and a conductor of any shape in the same plane and between the same two endpoints carrying equal current in the same direction, when placed in the same magnetic field experience the same force.
    • There is net repulsion between two similar charges moving parallel to each other in spite of attractive magnetic force between them. This is because of the electric force of repulsion which is much stronger than the magnetic force.
    • The speed of the charged particle can only be changed by an electric force.
The document Moving Charges and Magnetism Chapter Notes | Physics Class 12 - NEET is a part of the NEET Course Physics Class 12.
All you need of NEET at this link: NEET
105 videos|425 docs|114 tests

Top Courses for NEET

FAQs on Moving Charges and Magnetism Chapter Notes - Physics Class 12 - NEET

1. What is the Oersted Experiment and what observations and conclusions were drawn from it?
Ans. The Oersted Experiment demonstrated the relationship between electric current and magnetic fields. Observations included the deflection of a magnetic needle when placed near a current-carrying wire, indicating the presence of a magnetic field around the wire. The conclusion drawn was that electric currents produce magnetic fields.
2. How does Ampere's Circuital Law relate to magnetic fields and currents?
Ans. Ampere's Circuital Law states that the magnetic field around a closed loop is directly proportional to the current passing through the loop. This law helps in calculating the magnetic field around current-carrying conductors and is essential in understanding the behavior of magnetic fields.
3. What is the Biot-Savart Law and how is it used to calculate magnetic fields?
Ans. The Biot-Savart Law is used to determine the magnetic field produced by a current-carrying wire at any point in space. It states that the magnetic field at a point is directly proportional to the current flowing through the wire and inversely proportional to the distance from the wire.
4. What are the applications of Ampere's Circuital Law in real-life scenarios?
Ans. Ampere's Circuital Law is used in various practical applications, such as designing electromagnets, calculating the magnetic field around current-carrying solenoids, and analyzing the behavior of magnetic fields in transformers and electric motors.
5. How does the Lorentz Force affect charged particles in a uniform magnetic field?
Ans. The Lorentz Force is the force experienced by a charged particle moving in a magnetic field. It acts perpendicular to both the velocity of the particle and the magnetic field direction, causing the particle to move in a curved path. This force is responsible for the motion of charged particles in magnetic fields, as seen in cyclotrons and particle accelerators.
105 videos|425 docs|114 tests
Download as PDF
Explore Courses for NEET exam

Top Courses for NEET

Signup for Free!
Signup to see your scores go up within 7 days! Learn & Practice with 1000+ FREE Notes, Videos & Tests.
10M+ students study on EduRev
Related Searches

ppt

,

Semester Notes

,

Exam

,

mock tests for examination

,

Sample Paper

,

Previous Year Questions with Solutions

,

pdf

,

video lectures

,

study material

,

Objective type Questions

,

Moving Charges and Magnetism Chapter Notes | Physics Class 12 - NEET

,

Summary

,

Moving Charges and Magnetism Chapter Notes | Physics Class 12 - NEET

,

Extra Questions

,

past year papers

,

MCQs

,

Viva Questions

,

Free

,

practice quizzes

,

shortcuts and tricks

,

Important questions

,

Moving Charges and Magnetism Chapter Notes | Physics Class 12 - NEET

;