Mechanical Engineering Exam  >  Mechanical Engineering Tests  >  Test: Introduction & Properties of Fluid Level- 1 - Mechanical Engineering MCQ

Test: Introduction & Properties of Fluid Level- 1 - Mechanical Engineering MCQ


Test Description

14 Questions MCQ Test - Test: Introduction & Properties of Fluid Level- 1

Test: Introduction & Properties of Fluid Level- 1 for Mechanical Engineering 2024 is part of Mechanical Engineering preparation. The Test: Introduction & Properties of Fluid Level- 1 questions and answers have been prepared according to the Mechanical Engineering exam syllabus.The Test: Introduction & Properties of Fluid Level- 1 MCQs are made for Mechanical Engineering 2024 Exam. Find important definitions, questions, notes, meanings, examples, exercises, MCQs and online tests for Test: Introduction & Properties of Fluid Level- 1 below.
Solutions of Test: Introduction & Properties of Fluid Level- 1 questions in English are available as part of our course for Mechanical Engineering & Test: Introduction & Properties of Fluid Level- 1 solutions in Hindi for Mechanical Engineering course. Download more important topics, notes, lectures and mock test series for Mechanical Engineering Exam by signing up for free. Attempt Test: Introduction & Properties of Fluid Level- 1 | 14 questions in 45 minutes | Mock test for Mechanical Engineering preparation | Free important questions MCQ to study for Mechanical Engineering Exam | Download free PDF with solutions
Test: Introduction & Properties of Fluid Level- 1 - Question 1

A 150 mm diameter shaft rotates at 1500 r. p. m. within a 200 mm long journal bearing with 150.5 mm internal diameter. The uniform annular space between the shaft and the bearing is filled with oil of dynamic viscosity 0.8 poise. The shear stress on the shaft will be

Detailed Solution for Test: Introduction & Properties of Fluid Level- 1 - Question 1

Test: Introduction & Properties of Fluid Level- 1 - Question 2

What is the capillary rise in a narrow two dimensional slit of width ‘w’?

Detailed Solution for Test: Introduction & Properties of Fluid Level- 1 - Question 2

Assume unit dimension perpendicular to the plane of paper.

W = FT

(wh × 1)ρg = (σ × 1) × cos θ The weight of the fluid that rises up in the slit is balanced by the vertical component of surface tension force.

⇒ h = 2σ cos θ wρg For a tube with diameter w We know h = 4σ cos θ ρgw Clearly the capillary rise in slit is 2 times less than tube.

1 Crore+ students have signed up on EduRev. Have you? Download the App
Test: Introduction & Properties of Fluid Level- 1 - Question 3

In an experiment to determine the rheological behavior of a material, the observed relation between shear stress, τ and rate of shear strain, du / dy is τ = τo + C ( du / dy )0.5

Which of the following represents variation of dynamic viscosity of fluid with rate of shear strain?

Detailed Solution for Test: Introduction & Properties of Fluid Level- 1 - Question 3

By Ostwal-de Waal model

τ = ( du / dy )n + B

μapp = A ( du / dy )n-1

Given τ = τ0 + C ( du / dy )0.5

∴ μapp = C ( du / dy )-0.5

Alternative Method: As per Ostwal-de Waal relationship, n < 1="" for="" the="" fluid,="" thus="" it="" is="" a="" pseudo="" plastic="" fluid.="" in="" such="" cases="" apparent="" viscosity="" decreases="" with="" increasing="" strain="" />

Test: Introduction & Properties of Fluid Level- 1 - Question 4

A thin plane lamina of area A and weight W slides down a fixed plane inclined to the vertical at an angle α and maintains a uniform gap ε from the surface of the plane, the gap being filled with oil of viscosity μ. The terminal velocity of the plane is

Detailed Solution for Test: Introduction & Properties of Fluid Level- 1 - Question 4

As the plate starts sliding down because of its weight component, the oil between the plate and plane shall start flowing and viscous stress will act on the plate. With acceleration the velocity of plate and thus deformation rate of oil will increase. After the initial period of acceleration the viscous force will balance the weight component and plate will achieve equilibrium moving with constant velocity.

This final constant velocity is called terminal velocity. ∴ Gravitational force = Viscous Force

⇒ mg cos α = μ × VT / ε × A

⇒ given mg = W; we get VT = ε W cos α μA

*Answer can only contain numeric values
Test: Introduction & Properties of Fluid Level- 1 - Question 5

The figure shows a U-tube having a 5 mm × 5 mm square cross-section filled with mercury (specific gravity=13.6) up to a height of 20 cm in each limb (open to the atmosphere).

If 5cm3 of water is added to the right limb, the new height (in cm, up to two decimal places) of mercury in LEFT limb will be __________


Detailed Solution for Test: Introduction & Properties of Fluid Level- 1 - Question 5

Height of water column added

Test: Introduction & Properties of Fluid Level- 1 - Question 6

A spherical water drop of 1 mm in diameter splits up in air into 64 smaller drops of equal sizes. The surface tension coefficient of the water air interface is 0.073 N/m. The work required in splitting up the drop is

Detailed Solution for Test: Introduction & Properties of Fluid Level- 1 - Question 6
Imagine a small line of length dx on the surface of liquid with surface tension σ The force on the line = σdx

If this line is moved by a distance dy perpendicular to its length.

The area generated = dx × dy

The work required to increase the

Area = Fsurface × dy = σdxdy = σdA

i. e The work required = σ × (Increase of area) So , !rea of 1mm dia drop

= 4π (0.5 × 10-3)2 = 3.14 × 10-6m

Volume of each droplet = 4 / 3 πr3 / 64 = πR3 / 48

∴ Radius of each droplet

r = [ 3 / 4π (πR3 / 48)1/3

r = 0.125 mm

Surface area of all 64 drops = 64 × 4 × π (0.125 × 10-3)2 = 1.25 × 10−5m2 Increase in surface area = 1.25 × 10−5 − 3.14 × 10-6 = 9.36 × 10-6

The work required

= σ × ΔA = 0.073 × 9.36 × 10-6

= 6.83 × 10-7J

= 0.68 × 10-6J

Test: Introduction & Properties of Fluid Level- 1 - Question 7

The velocity distribution over a flat plate is gives by

u = (3 / 4)y − y2

The shear stress at a location 0.3 m above the plate is k times the shear stress at a location 0.2 m above the plate. The value of k is

Detailed Solution for Test: Introduction & Properties of Fluid Level- 1 - Question 7

From Newton’s law of viscosity,

τ = μ du / dy

Given, u = 3 / 4y − y2

⇒ du / dy = 3 / 4− 2y

∴ τ0.3 = μ ( 3 / 4 − 2(0.3))

= 0.15 μ

τ0.2 = μ (3 / 4− 2(0.2))

= 0.35 μ

According to question,

τ0.3 = k τ0.2

⇒ 0.15 μ = k × 0.35 μ

⇒ k = 3 / 7

Therefore option (C) is correct.

 

 

 

Test: Introduction & Properties of Fluid Level- 1 - Question 8

A beaker is filled with a liquid up to the mark of one litre and weighed. The weight of the liquid is found to be 6.5 N. The specific gravity of the liquid will be

Detailed Solution for Test: Introduction & Properties of Fluid Level- 1 - Question 8

Specific gravity(S) of a liquid is defined as the ratio of the density of the liquid(pl) to that of water(pw).

Thus, S = 0:66.

Test: Introduction & Properties of Fluid Level- 1 - Question 9

Develop a formula for capillary rise of a fluid having surface tension σ and contact angle θ between two concentric glass tubes of radii r0 and ri

Detailed Solution for Test: Introduction & Properties of Fluid Level- 1 - Question 9
Equating the weight of water risen to the vertical component of surface tension force,

wh π(r02 − ri2) = σ cos θ × 2π(r0 + ri)

∴ h = σ cos θ × 2π(r0 + ri) / wπ(r02 − r12)

= 2σ cos θ / w(r0 − ri)

Test: Introduction & Properties of Fluid Level- 1 - Question 10

A beaker is filled with a liquid up to the mark of one litre and weighed. The weight of the liquid is found to be 6.5 N. The specific gravity of the liquid will be

Detailed Solution for Test: Introduction & Properties of Fluid Level- 1 - Question 10

Specific gravity(S) of a liquid is defined as the ratio of the density of the liquid(pl) to that of water(pw).
fluid-mechanics-questions-answers-fluid-properties-q11
Thus, S = 0.66.

Test: Introduction & Properties of Fluid Level- 1 - Question 11

A circular disk of radius R is kept at a small height h above a fixed bed by means of a layer of oil of dynamic viscosity μ. If the disk is rotated at an angular velocity ω, obtain an expression for the viscous torque on the disk. Assume linear variation of velocity within the film.

Detailed Solution for Test: Introduction & Properties of Fluid Level- 1 - Question 11
Consider an element of disk of width dr at a radial distance r. For linear variation of velocity with depth h of oil film,

Shear stress τ = μ du / dy = μ u / h

Shear force = shear stress × area

= μ u / h × 2π r dr

Viscous torque on the element,

dT = μ u / h (2π r dr)r

Since the shaft rotates with angular velocity ω radians per second, the peripheral velocity u = ω r dT = μ ωr h (2π r dr)r = 2π μ ωr3dr h

Total viscous torque required to overcome the shearing force can be obtained by integrating from r = 0 to r = R.

Total torque T = 2π μ ω / h ∫R0 r3 dr

= 1 / 2 π μ ω / h R4

*Answer can only contain numeric values
Test: Introduction & Properties of Fluid Level- 1 - Question 12

A pressure vessel initially empty has an internal volume of 0.5 m3 . It is desired to test the vessel at 300 bar by pumping water into it. The estimated increase in volume of containers during the test is 6%. How much water (in kg) is required to be pumped? Consider the bulk modulus of elasticity for water to be 2 GPa.


Detailed Solution for Test: Introduction & Properties of Fluid Level- 1 - Question 12

During the test, initial volume of container (when it is empty) is

V1 = 0.5 m3

The volume increases by 6%, thus final volume is

V2 = V1 + 6% of V1 = 0.5 × 1.06

= 0.53 m3

Let the water pumped into the container have a volume of V3 when it is outside (i.e. under atmospheric conditions). But when it is pumped into the container it’s final volume will be V2 and pressure equal to 300 bar.

∴ for water

K = dp / (−dV / V)

i. e. −dV / V = dp / K

⇒ −(V2 − V3) / V3 = dp / K

⇒ V3 − V2 / V3 = dp / K

⇒ V3 (1 − dp / K) = V2

⇒ V3 = V2 / 1 −dp / K

V3 = 0.53 / 1 −300×105 / 2×109

⇒ V3 = 0.538

Mass of water = ρ × V3 = 1000 × 0.538 = 538 kg

*Answer can only contain numeric values
Test: Introduction & Properties of Fluid Level- 1 - Question 13

A hydraulic lift used for lifting automobiles has 20 cm diameter ram which slides in a 20.016 cm diameter cylinder. The annular space between the cylinder and ram is filled with an oil of kinematic viscosity 3.5 strokes and relative density 0.85. If the travel of 3.2 m long ram has a uniform rate of 15 cm/s, estimate the frictional resistance experienced by the ram.


Detailed Solution for Test: Introduction & Properties of Fluid Level- 1 - Question 13

Kinematic viscosity

ν = 3.5 stokes = 3.5 cm2/s = 3.5 × 10−4 m2/s

Mass density ρ = 0.85 × 1000 = 850 kg/m3

∴ Dynamic viscosity μ = ρ ν

= 850 × (3.5 × 10-4)

= 0.2975 N s/m2

Thickness of oil film

=(20.016 − 20) / 2 × 10-2

= 0.00008 m

Shear stress τ = μ du / dy = μ V / t

= 0.2975 × 0.15 / 0.00008 m

= 557.81 N/m2

Frictional resistance

= shear stress × area

= 557.81 × (π × 0.20 × 3.2)

= 1121 N = 1.12 kN

 

 

 

 

Test: Introduction & Properties of Fluid Level- 1 - Question 14

n an experiment, the following shear stress time rate of shear strain values are obtained for a fluid

Detailed Solution for Test: Introduction & Properties of Fluid Level- 1 - Question 14

The slope of τ vs ϕ̇ is equal to apparent viscosity of fluid.

Consider average slope (average apparent viscosity)

1. Data points ② and ①

μapp = 1.4 − 0 / 2 − 0 = 0.7

2. Data points ③ and ②

μapp = 2.6 − 1.4 / 3 − 2 = 1.2

3. Data points ④ and ③

μapp = 4 − 2.6 / 4 − 3 = 1.4

Thus as τ increases μapp also increases i.e. the fluid is shear thickening fluid (dilatant).

Information about Test: Introduction & Properties of Fluid Level- 1 Page
In this test you can find the Exam questions for Test: Introduction & Properties of Fluid Level- 1 solved & explained in the simplest way possible. Besides giving Questions and answers for Test: Introduction & Properties of Fluid Level- 1, EduRev gives you an ample number of Online tests for practice

Top Courses for Mechanical Engineering

Download as PDF

Top Courses for Mechanical Engineering