A physicist performs a series of experiments to determine the relative magnitude of electric charge on four particles. A given particle is considered to have a higher magnitude of charge than another if it will push out (or draw in) a positive test charge farther than the other particle.
A particle that pushes the test charge has positive charge, while a particle that pulls (or draws in) the test charge has negative charge. This is known as the sign of the charge. Magnitude of charge is unrelated to sign.
The experiment is conducted on a horizontal axis that measures from 20m in total: from –10m on the left to +10m on the right, with a measurement of 0m in the middle.
Experiment 1
Particle A is placed at position –5m on the horizontal axis. The test charge has a specific magnitude of charge and is located at +3m on that same axis. The result of the experiment is that the test charge is displaced to +7.5m.
Experiment 2
Particle B is placed at position –8m on the horizontal axis. The test charge has the same magnitude of charge as the previous experiment and is located at 0m on that same axis. The result of the experiment is that the test charge is displaced to –7.5m.
Experiment 3
Particle C is placed at position 0m on the horizontal axis. The test charge has the same magnitude of charge as the previous experiment and is located at +8m on that same axis. The result of the experiment is that the test charge is displaced to +10m.
Experiment 4
Particle D is placed at position –5.5m on the horizontal axis. The test charge has the same magnitude of charge as the previous experiment and is located at +2.5m on that same axis. The result of the experiment is that the test charge is displaced to +7.5m.
Q. Which of the particles is negatively charged?
A physicist performs a series of experiments to determine the relative magnitude of electric charge on four particles. A given particle is considered to have a higher magnitude of charge than another if it will push out (or draw in) a positive test charge farther than the other particle.
A particle that pushes the test charge has positive charge, while a particle that pulls (or draws in) the test charge has negative charge. This is known as the sign of the charge. Magnitude of charge is unrelated to sign.
The experiment is conducted on a horizontal axis that measures from 20m in total: from –10m on the left to +10m on the right, with a measurement of 0m in the middle.
Experiment 1
Particle A is placed at position –5m on the horizontal axis. The test charge has a specific magnitude of charge and is located at +3m on that same axis. The result of the experiment is that the test charge is displaced to +7.5m.
Experiment 2
Particle B is placed at position –8m on the horizontal axis. The test charge has the same magnitude of charge as the previous experiment and is located at 0m on that same axis. The result of the experiment is that the test charge is displaced to –7.5m.
Experiment 3
Particle C is placed at position 0m on the horizontal axis. The test charge has the same magnitude of charge as the previous experiment and is located at +8m on that same axis. The result of the experiment is that the test charge is displaced to +10m.
Experiment 4
Particle D is placed at position –5.5m on the horizontal axis. The test charge has the same magnitude of charge as the previous experiment and is located at +2.5m on that same axis. The result of the experiment is that the test charge is displaced to +7.5m.
Q. The results of experiments 3 and 4 show that __________.
1 Crore+ students have signed up on EduRev. Have you? Download the App |
A physicist performs a series of experiments to determine the relative magnitude of electric charge on four particles. A given particle is considered to have a higher magnitude of charge than another if it will push out (or draw in) a positive test charge farther than the other particle.
A particle that pushes the test charge has positive charge, while a particle that pulls (or draws in) the test charge has negative charge. This is known as the sign of the charge. Magnitude of charge is unrelated to sign.
The experiment is conducted on a horizontal axis that measures from 20m in total: from –10m on the left to +10m on the right, with a measurement of 0m in the middle.
Experiment 1
Particle A is placed at position –5m on the horizontal axis. The test charge has a specific magnitude of charge and is located at +3m on that same axis. The result of the experiment is that the test charge is displaced to +7.5m.
Experiment 2
Particle B is placed at position –8m on the horizontal axis. The test charge has the same magnitude of charge as the previous experiment and is located at 0m on that same axis. The result of the experiment is that the test charge is displaced to –7.5m.
Experiment 3
Particle C is placed at position 0m on the horizontal axis. The test charge has the same magnitude of charge as the previous experiment and is located at +8m on that same axis. The result of the experiment is that the test charge is displaced to +10m.
Experiment 4
Particle D is placed at position –5.5m on the horizontal axis. The test charge has the same magnitude of charge as the previous experiment and is located at +2.5m on that same axis. The result of the experiment is that the test charge is displaced to +7.5m.
Q. The results of Experiment 1 and 2 show that __________.
A physicist performs a series of experiments to determine the relative magnitude of electric charge on four particles. A given particle is considered to have a higher magnitude of charge than another if it will push out (or draw in) a positive test charge farther than the other particle.
A particle that pushes the test charge has positive charge, while a particle that pulls (or draws in) the test charge has negative charge. This is known as the sign of the charge. Magnitude of charge is unrelated to sign.
The experiment is conducted on a horizontal axis that measures from 20m in total: from –10m on the left to +10m on the right, with a measurement of 0m in the middle.
Experiment 1
Particle A is placed at position –5m on the horizontal axis. The test charge has a specific magnitude of charge and is located at +3m on that same axis. The result of the experiment is that the test charge is displaced to +7.5m.
Experiment 2
Particle B is placed at position –8m on the horizontal axis. The test charge has the same magnitude of charge as the previous experiment and is located at 0m on that same axis. The result of the experiment is that the test charge is displaced to –7.5m.
Experiment 3
Particle C is placed at position 0m on the horizontal axis. The test charge has the same magnitude of charge as the previous experiment and is located at +8m on that same axis. The result of the experiment is that the test charge is displaced to +10m.
Experiment 4
Particle D is placed at position –5.5m on the horizontal axis. The test charge has the same magnitude of charge as the previous experiment and is located at +2.5m on that same axis. The result of the experiment is that the test charge is displaced to +7.5m.
Q. Which of the following represents the order of charge of the four particles, from highest to lowest?
A physicist performs a series of experiments to determine the relative magnitude of electric charge on four particles. A given particle is considered to have a higher magnitude of charge than another if it will push out (or draw in) a positive test charge farther than the other particle.
A particle that pushes the test charge has positive charge, while a particle that pulls (or draws in) the test charge has negative charge. This is known as the sign of the charge. Magnitude of charge is unrelated to sign.
The experiment is conducted on a horizontal axis that measures from 20m in total: from –10m on the left to +10m on the right, with a measurement of 0m in the middle.
Experiment 1
Particle A is placed at position –5m on the horizontal axis. The test charge has a specific magnitude of charge and is located at +3m on that same axis. The result of the experiment is that the test charge is displaced to +7.5m.
Experiment 2
Particle B is placed at position –8m on the horizontal axis. The test charge has the same magnitude of charge as the previous experiment and is located at 0m on that same axis. The result of the experiment is that the test charge is displaced to –7.5m.
Experiment 3
Particle C is placed at position 0m on the horizontal axis. The test charge has the same magnitude of charge as the previous experiment and is located at +8m on that same axis. The result of the experiment is that the test charge is displaced to +10m.
Experiment 4
Particle D is placed at position –5.5m on the horizontal axis. The test charge has the same magnitude of charge as the previous experiment and is located at +2.5m on that same axis. The result of the experiment is that the test charge is displaced to +7.5m.
Q. If particle C and particle D are placed on the axis at the same time, accoring to the results of the experiment, what is likely to occur?
The photoelectric effect is a phenomenon that has led to many important scientific discoveries. Light of a particular wavelength is shined onto a piece of metal, showering the metal with photons. Wavelength is inversely related to a photon's energy. That is, with a smaller wavelength, the photon has greater energy. The wavelength of the light is decreased until a detector next to the metal senses that electrons are being ejected from the metal. This sensor also tells us how many electrons are ejected per second, which we call electrical current. At this point, any additional decrease in wavelength does not affect the number of electrons ejected. This point is called the metal's work function. However, if we then begin to increase the intensity of the light being shone (meaning the amount of light as opposed to the light's wavelength), the number of electrons picked up by the sensor increases.
Q. Based on the information in the passage, the term "work function" can be most accurately described as which of the following?
The photoelectric effect is a phenomenon that has led to many important scientific discoveries. Light of a particular wavelength is shined onto a piece of metal, showering the metal with photons. Wavelength is inversely related to a photon's energy. That is, with a smaller wavelength, the photon has greater energy. The wavelength of the light is decreased until a detector next to the metal senses that electrons are being ejected from the metal. This sensor also tells us how many electrons are ejected per second, which we call electrical current. At this point, any additional decrease in wavelength does not affect the number of electrons ejected. This point is called the metal's work function. However, if we then begin to increase the intensity of the light being shone (meaning the amount of light as opposed to the light's wavelength), the number of electrons picked up by the sensor increases.
Q. According to the information in the passage, what can we infer would happen if the intensity of the light were decreased immediately after reaching the work function?
The photoelectric effect is a phenomenon that has led to many important scientific discoveries. Light of a particular wavelength is shined onto a piece of metal, showering the metal with photons. Wavelength is inversely related to a photon's energy. That is, with a smaller wavelength, the photon has greater energy. The wavelength of the light is decreased until a detector next to the metal senses that electrons are being ejected from the metal. This sensor also tells us how many electrons are ejected per second, which we call electrical current. At this point, any additional decrease in wavelength does not affect the number of electrons ejected. This point is called the metal's work function. However, if we then begin to increase the intensity of the light being shone (meaning the amount of light as opposed to the light's wavelength), the number of electrons picked up by the sensor increases.
Q. Light intensity can best be described as which of the following?
A particle accelerator functions by exerting a magnetic field on charged particles which are shot into the accelerator. The magnetic field causes the charged particles to move around in a circle of radius R that can be predicted by the following equation, where mp is the mass of the particle in kilograms, v is the initial speed at which the particle was shot in meters per second, q is the charge of the particle in Coulombs, and B is the strength of the magnetic field in Tesla.
R=mpv/qB
A proton weighs approximately 1 amu (atomic mass units) and has a charge of 1.6∗10−19 C. An electron has the same magnitude of charge, but it has about 1/1800 of the proton's mass. What would happen to radius R if we were to suddenly switch the particle in the accelerator from a proton to an electron, keeping all of the other conditions the same?
A particle accelerator functions by exerting a magnetic field on charged particles which are shot into the accelerator. The magnetic field causes the charged particles to move around in a circle of radius R that can be predicted by the following equation, where mp is the mass of the particle in kilograms, v is the initial speed at which the particle was shot in meters per second, q is the charge of the particle in Coulombs, and B is the strength of the magnetic field in Tesla.
R=mpv/qB
If a given magnetic field's strength B=x and its radius R=y, what would the radius R be at B=3x?