Software Development Exam  >  Software Development Tests  >  Test: String Processing - 1 - Software Development MCQ

Test: String Processing - 1 - Software Development MCQ


Test Description

15 Questions MCQ Test - Test: String Processing - 1

Test: String Processing - 1 for Software Development 2025 is part of Software Development preparation. The Test: String Processing - 1 questions and answers have been prepared according to the Software Development exam syllabus.The Test: String Processing - 1 MCQs are made for Software Development 2025 Exam. Find important definitions, questions, notes, meanings, examples, exercises, MCQs and online tests for Test: String Processing - 1 below.
Solutions of Test: String Processing - 1 questions in English are available as part of our course for Software Development & Test: String Processing - 1 solutions in Hindi for Software Development course. Download more important topics, notes, lectures and mock test series for Software Development Exam by signing up for free. Attempt Test: String Processing - 1 | 15 questions in 30 minutes | Mock test for Software Development preparation | Free important questions MCQ to study for Software Development Exam | Download free PDF with solutions
Test: String Processing - 1 - Question 1

Which of the following statements best describes dynamic programming in the context of string processing?

Detailed Solution for Test: String Processing - 1 - Question 1

Dynamic programming is a technique that uses a bottom-up approach to solve problems by breaking them into overlapping subproblems.

Test: String Processing - 1 - Question 2

What is the purpose of using string hashing in string processing algorithms?

Detailed Solution for Test: String Processing - 1 - Question 2

String hashing converts a string into a numeric value, which can be useful for comparing strings efficiently.

Test: String Processing - 1 - Question 3

Which of the following string processing algorithms is used for exact string matching in a text?

Detailed Solution for Test: String Processing - 1 - Question 3

Rabin-Karp algorithm

Test: String Processing - 1 - Question 4

Which of the following statements is true regarding the Rabin-Karp algorithm?

Test: String Processing - 1 - Question 5

What is the main idea behind the KMP (Knuth-Morris-Pratt) algorithm?

Test: String Processing - 1 - Question 6

Consider the following Python code:

def longest_common_subsequence(s1, s2):
    m = len(s1)
    n = len(s2)
    dp = [[0] * (n + 1) for _ in range(m + 1)]

    for i in range(1, m + 1):
        for j in range(1, n + 1):
            if s1[i - 1] == s2[j - 1]:
                dp[i][j] = dp[i - 1][j - 1] + 1
            else:
                dp[i][j] = max(dp[i - 1][j], dp[i][j - 1])

    return dp[m][n]

s1 = "ABCBDAB"
s2 = "BDCAB"
print(longest_common_subsequence(s1, s2))

What will be the output of the code?

Detailed Solution for Test: String Processing - 1 - Question 6

The given code calculates the length of the longest common subsequence between the strings s1 and s2. The output will be 5.

Test: String Processing - 1 - Question 7

Consider the following Python code:

def string_matching(pattern, text):
    m = len(pattern)
    n = len(text)
    for i in range(n - m + 1):
        j = 0
        while j < m and text[i + j] == pattern[j]:
            j += 1
        if j == m:
            return True
    return False

pattern = "abc"
text = "abdefghabcijk"
print(string_matching(pattern, text))
What will be the output of the code?

Detailed Solution for Test: String Processing - 1 - Question 7

The code checks if the pattern "abc" exists in the text "abdefghabcijk". Since the pattern is present, the output will be True.

Test: String Processing - 1 - Question 8

Consider the following Python code:

def z_function(s):
    n = len(s)
    z = [0] * n
    l = r = 0
    for i in range(1, n):
        if i <= r:
            z[i] = min(r - i + 1, z[i - l])
        while i + z[i] < n and s[z[i]] == s[i + z[i]]:
            z[i] += 1
        if i + z[i] - 1 > r:
            l = i
            r = i + z[i] - 1
    return z

s = "ABACABAC"
print(z_function(s))

What will be the output of the code?

Detailed Solution for Test: String Processing - 1 - Question 8

The code calculates the Z-function values for the string "ABACABAC". The Z-function is a useful tool for pattern matching. The output will be [0, 1, 0, 1, 4, 0, 1, 0].

Test: String Processing - 1 - Question 9

Consider the following Python code:

def suffix_array(s):
    suffixes = [(s[i:], i) for i in range(len(s))]
    suffixes.sort()
    return [i for _, i in suffixes]

s = "banana"
print(suffix_array(s))

What will be the output of the code?

Detailed Solution for Test: String Processing - 1 - Question 9

The code calculates the suffix array for the string "banana". A suffix array represents the lexicographic order of all the suffixes of a string. The output will be [5, 3, 1, 0, 4, 2].

Test: String Processing - 1 - Question 10

Consider the following Python code:

def count_distinct_substrings(s):
    n = len(s)
    distinct_substrings = set()
    for i in range(n):
        for j in range(i, n):
            distinct_substrings.add(s[i:j+1])
    return len(distinct_substrings)

s = "aab"
print(count_distinct_substrings(s))

What will be the output of the code?

Detailed Solution for Test: String Processing - 1 - Question 10

The code counts the number of distinct substrings in the string "aab". The distinct substrings are "a", "aa", "b", "ab", "aba", and "aab". The output will be 6.

Test: String Processing - 1 - Question 11

Consider the following Python code:

def longest_palindrome_substring(s):
    n = len(s)
    max_len = 1
    start = 0
    for i in range(n):
        for j in range(i, n):
            substring = s[i:j+1]
            if substring == substring[::-1] and len(substring) > max_len:
                max_len = len(substring)
                start = i
    return s[start:start + max_len]

s = "babad"
print(longest_palindrome_substring(s))

What will be the output of the code?

Detailed Solution for Test: String Processing - 1 - Question 11

The code finds the longest palindrome substring in the string "babad". The longest palindrome substring is "bab". The output will be "bab".

Test: String Processing - 1 - Question 12

Consider the following Python code:

def distinct_palindromic_substrings(s):
    n = len(s)
    distinct_substrings = set()
    for i in range(n):
        for j in range(i, n):
            substring = s[i:j+1]
            if substring == substring[::-1]:
                distinct_substrings.add(substring)
    return len(distinct_substrings)

s = "ababa"
print(distinct_palindromic_substrings(s))

What will be the output of the code?

Detailed Solution for Test: String Processing - 1 - Question 12

The code counts the number of distinct palindromic substrings in the string "ababa". The distinct palindromic substrings are "a", "b", "ababa", "aba", and "bab". The output will be 5.

Test: String Processing - 1 - Question 13

Consider the following Python code:

def longest_common_substring(s1, s2):
    m = len(s1)
    n = len(s2)
    dp = [[0] * (n + 1) for _ in range(m + 1)]
    max_len = 0
    end_index = 0

    for i in range(1, m + 1):
        for j in range(1, n + 1):
            if s1[i - 1] == s2[j - 1]:
                dp[i][j] = dp[i - 1][j - 1] + 1
                if dp[i][j] > max_len:
                    max_len = dp[i][j]
                    end_index = i

    return s1[end_index - max_len: end_index]

s1 = "OldSite:GeeksforGeeks.org"
s2 = "NewSite:GeeksQuiz.com"
print(longest_common_substring(s1, s2))
What will be the output of the code?

Detailed Solution for Test: String Processing - 1 - Question 13

The code finds the longest common substring between the strings "OldSite:GeeksforGeeks.org" and "NewSite:GeeksQuiz.com". The longest common substring is "Site:GeeksforGeeks". The output will be "Site:GeeksforGeeks".

Test: String Processing - 1 - Question 14

Consider the following Python code:

def shortest_common_supersequence(s1, s2):
    m = len(s1)
    n = len(s2)
    dp = [[0] * (n + 1) for _ in range(m + 1)]

    for i in range(m + 1):
        for j in range(n + 1):
            if i == 0:
                dp[i][j] = j
            elif j == 0:
                dp[i][j] = i
            elif s1[i - 1] == s2[j - 1]:
                dp[i][j] = 1 + dp[i - 1][j - 1]
            else:
                dp[i][j] = 1 + min(dp[i - 1][j], dp[i][j - 1])

    supersequence = ""
    i = m
    j = n
    while i > 0 and j > 0:
        if s1[i - 1] == s2[j - 1]:
            supersequence += s1[i - 1]
            i -= 1
            j -= 1
        elif dp[i - 1][j] < dp[i][j - 1]:
            supersequence += s1[i - 1]
            i -= 1
        else:
            supersequence += s2[j - 1]
            j -= 1

    while i > 0:
        supersequence += s1[i - 1]
        i -= 1

    while j > 0:
        supersequence += s2[j - 1]
        j -= 1

    return supersequence[::-1]

s1 = "AGGTAB"
s2 = "GXTXAYB"
print(shortest_common_supersequence(s1, s2))
What will be the output of the code?

Detailed Solution for Test: String Processing - 1 - Question 14

The code finds the shortest common supersequence of the strings "AGGTAB" and "GXTXAYB". A supersequence is a string that contains both input strings as subsequences. The shortest common supersequence is "AGGTABGXTXAYB". The output will be "AGGTABGXTXAYB".

Test: String Processing - 1 - Question 15

Consider the following Python code:

def distinct_common_subsequences(s1, s2):
    m = len(s1)
    n = len(s2)
    dp = [[0] * (n + 1) for _ in range(m + 1)]

    for i in range(1, m + 1):
        for j in range(1, n + 1):
            if s1[i - 1] == s2[j - 1]:
                dp[i][j] = 1 + dp[i - 1][j - 1] + dp[i - 1][j] + dp[i][j - 1]
            else:
                dp[i][j] = dp[i - 1][j] + dp[i][j - 1] - dp[i - 1][j - 1]

    return dp[m][n]

s1 = "abcd"
s2 = "acde"
print(distinct_common_subsequences(s1, s2))

What will be the output of the code?

Detailed Solution for Test: String Processing - 1 - Question 15

The code counts the number of distinct common subsequences between the strings "abcd" and "acde". The distinct common subsequences are "a", "c", "d", "ac", "ad", "cd", "acd", "ade", "acd", "acd", "acd", "acd", "acde", and "acd". The output will be 14.

Information about Test: String Processing - 1 Page
In this test you can find the Exam questions for Test: String Processing - 1 solved & explained in the simplest way possible. Besides giving Questions and answers for Test: String Processing - 1, EduRev gives you an ample number of Online tests for practice
Download as PDF