Step 1 of solving this GMAT DS question: Understand the Question Stem
What kind of an answer will the question fetch?
The question is an "Is" question. Answer to an "is" questions is either YES or NO.
When is the data sufficient?
The data is sufficient if we are able to get a DEFINITE YES or a DEFINITE NO from the information given in the statements.
What additional information do we have about P from the question stem?
'P' is a 2-digit positive integer.
Step 2 of solving this GMAT DS question:
Evaluate Statement (1) ALONE: (P + 2) and (P - 2) are prime.
Inference: (P - 2), P and (P + 2) are 3 consecutive odd integers.
Why?
Because (P - 2) and (P + 2) are prime, both numbers have to be odd.
(P - 2), P, and (P + 2) are three numbers in an arithmetic progression with a common difference of 2.
So, the 3 numbers have to be 3 consecutive odd or consecutive even integers. If (P - 2) and (P + 2) are odd, then these 3 numbers have to be 3 consecutive odd integers.
One out of 3 consecutive odd integers, (P - 2), P, and (P + 2) will definitely be a multiple of '3'.
If (P + 2) and (P - 2) are prime, then P has to be a multiple of '3', which is not prime.
The only exception is if the 3 consecutive odd numbers are 3, 5, and 7. However, we are dealing with two digit positive integers. So that possibility is ruled out.
Statement 1 ALONE is sufficient.
Eliminate choices B, C, and E. Choices narrow down to A or D.
Step 3 of solving this GMAT DS question:
Evaluate Statement (2) ALONE: (P - 4) and (P + 4) are prime.
This is a brilliant statement.
1. The remainder when (P - 4) and (P - 1) are divided by 3 will be the same.
2. Similarly, the remainder when (P + 4) and (P + 1) are divided by 3 will be the same.
If (P - 4) and (P + 4) are prime, both (P - 4) and (P + 4) will leave a remainder when divided by 3.
Therefore, (P - 1) and (P + 1) will also leave a remainder when divided by 3. i.e., they are not divisible by 3.
(P - 1), P, (P + 1) are 3 consecutive positive integers.
One out of 3 consecutive integers, (P - 1), P, and (P + 1) will definitely be a multiple of '3'.
If (P - 1) and (P + 1) are not divisible by 3, then P has to be a multiple of '3'.
P cannot be 3 because P is a 2-digit number. So, that possiblity is ruled out.
Any 2-digit number that is a multiple of 3 cannot be prime.
Therefore, P is not prime.
Statement 2 ALONE is also sufficient.
Eliminate choice A.
Each statement is INDEPENDENTLY sufficient. Choice D is the answer.