JEE Exam  >  JEE Tests  >  VITEEE: Subject Wise and Full Length MOCK Tests  >  VITEEE PCME Mock Test - 2 - JEE MCQ

VITEEE PCME Mock Test - 2 - JEE MCQ


Test Description

30 Questions MCQ Test VITEEE: Subject Wise and Full Length MOCK Tests - VITEEE PCME Mock Test - 2

VITEEE PCME Mock Test - 2 for JEE 2025 is part of VITEEE: Subject Wise and Full Length MOCK Tests preparation. The VITEEE PCME Mock Test - 2 questions and answers have been prepared according to the JEE exam syllabus.The VITEEE PCME Mock Test - 2 MCQs are made for JEE 2025 Exam. Find important definitions, questions, notes, meanings, examples, exercises, MCQs and online tests for VITEEE PCME Mock Test - 2 below.
Solutions of VITEEE PCME Mock Test - 2 questions in English are available as part of our VITEEE: Subject Wise and Full Length MOCK Tests for JEE & VITEEE PCME Mock Test - 2 solutions in Hindi for VITEEE: Subject Wise and Full Length MOCK Tests course. Download more important topics, notes, lectures and mock test series for JEE Exam by signing up for free. Attempt VITEEE PCME Mock Test - 2 | 125 questions in 150 minutes | Mock test for JEE preparation | Free important questions MCQ to study VITEEE: Subject Wise and Full Length MOCK Tests for JEE Exam | Download free PDF with solutions
VITEEE PCME Mock Test - 2 - Question 1

A circle is tangent to the line y = x at the point P(1, 1) and passes through point (1, -3). Find the radius of the circle.

Detailed Solution for VITEEE PCME Mock Test - 2 - Question 1


Family of circle touching a given line at a given point
(x - 1)2 + (y - 1)2 + λ(x - y) = 0
This circle passes through point (1, -3)
So, 0 + 16 + λ(1 + 3) = 0 ⇒ λ = -4
So, required circle
x2 + 1 - 2x + y2 + 1 - 2y - 4x + 4y = 0
x2 + y2 - 6x + 2y + 2 = 0

VITEEE PCME Mock Test - 2 - Question 2

If x = sin t, y = cos pt, then 

Detailed Solution for VITEEE PCME Mock Test - 2 - Question 2

Given, x = sin t, y = cos pt 




⇒ (1−x2) y2 − xy1 + p2y = 0

VITEEE PCME Mock Test - 2 - Question 3

In the standard form of an ellipse sum of the focal distances of a point on the ellipse is

Detailed Solution for VITEEE PCME Mock Test - 2 - Question 3

In the standard form of an ellipse x2/a2 + y2/b2 = 1
Focal distances are,
PS = a(1 + ecosθ)
PS = a(1 − ecosθ)
Hence in the standard form of an ellipse sum of the focal distances of a point is 2a.

VITEEE PCME Mock Test - 2 - Question 4

The curve described parametrically by:
x = t² + 2t - 1,
y = 3t + 5
represents:

Detailed Solution for VITEEE PCME Mock Test - 2 - Question 4

Given,
x = t² + 2t - 1 …(i)
y = 3t + 5 ⇒ t = (y - 5)/3 …(ii)
On putting the value of t in Eq. (i), we get

This is an equation of a parabola.

VITEEE PCME Mock Test - 2 - Question 5

If f(x) is a polynomial of least degree such that  then f(x) = 

Detailed Solution for VITEEE PCME Mock Test - 2 - Question 5

Let 
  exist only when 
So, the degree of numerator should be greater than or equal to the degree of denominator for the limit to be zero.
Therefore, a0 = a1 = 0

Here, limit should be of the form 0/0
So, 1 + a2 = 0

⇒ a3 = 2
Hence, f(x) = 2x3 − x2 = −x2 + 2x3

VITEEE PCME Mock Test - 2 - Question 6

If the equation 4y³ - 8a²yx² - 3ay²x + 8x³ = 0 represents three straight lines, two of which are perpendicular, then the sum of all possible values of a is equal to:

Detailed Solution for VITEEE PCME Mock Test - 2 - Question 6

Given:

4y³ - 8a²yx² - 3ay²x + 8x³ = 0

This is a homogeneous equation of degree 3, hence it represents three lines passing through the origin.

Now, to find the slopes of these lines, divide the equation by x³:

⇒ 4(y/x)³ - 3a(y/x)² - 8a²(y/x) + 8 = 0
⇒ 4(m)³ - 3a(m)² - 8a²(m) + 8 = 0

Let the roots of the cubic equation be m₁, m₂, and m₃.

Therefore, m₁m₂m₃ = -8/4 = -2.

Given m₁m₂ = -1, we find m₃ = 2.

Now substitute m = 2 into the equation:

⇒ 4(2)³ - 3a(2)² - 8a²(2) + 8 = 0
⇒ 4a² + 3a - 10 = 0

Solving the quadratic equation:

⇒ 4a² + 3a - 10 = 0

The sum of the possible values of a is -3/4.

VITEEE PCME Mock Test - 2 - Question 7

If A is a 3×3 non-singular matrix such that AA′ = A′A, and B = A⁻¹A′, then BB′ equals:

Detailed Solution for VITEEE PCME Mock Test - 2 - Question 7

Given, B = A⁻¹A′

Post-multiplying both sides by A, we get:
BA = A⁻¹A′A

Since AA′ = A′A, we can write:
BA = A⁻¹AA′

Simplifying:
BA = A′

Taking the transpose on both sides:
(BA)′ = (A′)′

This gives:
A′B′ = A

Pre-multiplying by A⁻¹, we get:
A⁻¹A′B′ = A⁻¹A

Since A⁻¹A = I, it follows that:
BB′ = I

Thus, the correct answer is D) I.

VITEEE PCME Mock Test - 2 - Question 8

The modulus and amplitude of (1 + 2i) / [1 - (1 - i)²] are:

Detailed Solution for VITEEE PCME Mock Test - 2 - Question 8

 

∴ |z| = 1

VITEEE PCME Mock Test - 2 - Question 9

The value of objective function is maximum under linear constraints is

Detailed Solution for VITEEE PCME Mock Test - 2 - Question 9

In Linear Programming Problems (LPP), the objective function (like maximizing profit or minimizing cost) is subject to a set of linear constraints (inequalities).
The feasible region is the area (usually a polygon) that satisfies all constraints.
According to the Fundamental Theorem of Linear Programming, the maximum or minimum value of the objective function occurs at one of the vertices (corner points) of the feasible region.
This means:
You don't need to check all points, just evaluate the objective function at the vertices of the feasible region.

So, the value is maximum at:
A vertex of the feasible region (not necessarily the farthest or center).

VITEEE PCME Mock Test - 2 - Question 10

If a, b ∈ R and a ≠ 0, and the quadratic equation ax² − bx + 1 = 0 has imaginary roots, then the value of a + b + 1 is:

Detailed Solution for VITEEE PCME Mock Test - 2 - Question 10

If a quadratic equation has imaginary roots, it implies that the quadratic expression is always positive or always negative.

Given the quadratic function:
f(x) = ax² − bx + 1

At x = 0, we get f(0) = 1.

Since f(0) > 0, it means f(x) > 0 for all x ∈ R (i.e., the quadratic expression is always positive).

Now, evaluating at x = -1:
f(-1) > 0

This simplifies to:
a + b + 1 > 0

VITEEE PCME Mock Test - 2 - Question 11

A ring, disc and solid sphere are having same speed of COM at the bottom of incline as shown in the figure. If surface of incline is sufficiently rough, the ratio of height attained by ring, disc and sphere is

Detailed Solution for VITEEE PCME Mock Test - 2 - Question 11


h1 : h2 : h3 = (1 + k1) : (1 + k2) : (1 + k3)
h1 : h2 : h3 = (1 + 1) : (1 + 1/2) : (1 + 2/5)
h1 : h2 : h3 = 2 : 3/2 : 7/5
h1 : h2 : h3 = 20 : 15 : 14

VITEEE PCME Mock Test - 2 - Question 12

Energy from the sun is received on earth at the rate of 2 cal per cm2 per min. If average wavelength of solar light be taken as 5500, then how many photons are received on the earth per cm2 per min?
(h = 6.6 x 10-34 Js, 1 cal = 4.2 J).

Detailed Solution for VITEEE PCME Mock Test - 2 - Question 12

Energy received from the sun
= 2 cal cm–2 (min)–1
= 8.4 J cm–2 (min)–1
Energy of 1 photon received from sun,
= 3.6 10–19 J
Number of photons reaching the earth per cm2 per minute will be


= 2.33 × 1019 photons / cm/ min

VITEEE PCME Mock Test - 2 - Question 13

The current-voltage graph for a device is shown in the figure.

The resistance is negative in the region

Detailed Solution for VITEEE PCME Mock Test - 2 - Question 13

Resistance R = ΔV/Δi
Negative resistance occurs when current decreases as voltage increases. Region AB shows this behavior.

VITEEE PCME Mock Test - 2 - Question 14

Which of the following type of radiations are radiated by an oscillating electric charge?

Detailed Solution for VITEEE PCME Mock Test - 2 - Question 14

When charged body is at rest or static position, it produces electric field and when it is in motion, it produces both electric and magnetic fields. Thus, any oscillating charged body will produce electromagnetic radiations.

VITEEE PCME Mock Test - 2 - Question 15

A typical silt (hard mud) particle of radius 20 μm, whose density is 2000 kg m⁻³, is on the top of a lake. The viscosity and density of lake water are 1.0 mPa and 1000 kg m⁻³, respectively. If the lake is standing still (has no internal fluid motion), the terminal speed with which the particle hits the bottom of the lake is ____ mm s⁻¹.

Detailed Solution for VITEEE PCME Mock Test - 2 - Question 15

VITEEE PCME Mock Test - 2 - Question 16

A network of six identical capacitors, each of value C, is made as shown in the figure.

The equivalent capacitance between the points A and B is

Detailed Solution for VITEEE PCME Mock Test - 2 - Question 16

Let us name the different points in the question as A, B, D, E, F, and G.

Now, we can clearly see that points A and E are connected through the conducting wire, so we can join them because they have the same potential. We will call the new point A only.

Similarly, points B and F have the same potential. So, we join them and call the new point B only (as shown in the diagram below).

Now, we observe that the two capacitors between points A and G are in parallel, so we find the equivalent capacitance of these two capacitors. Similarly, the two capacitors between points B and D are in parallel, so we find the equivalent capacitance of these two capacitors.

Ceq = C + C = 2C (between A and G)
Ceq = C + C = 2C (between B and D)

Now, in the limb AGB, there are two capacitors in series, so the equivalent capacitance can be written as:
1/Ceq = 1/C + 1/2C ⇒ Ceq = 2C/3

Similarly, in the limb ADB, the capacitors are in series, so we find the equivalent capacitance:
1/Ceq = 1/C + 1/2C ⇒ Ceq = 2C/3

Now, it is clearly seen that the two capacitors, each having a capacitance of 2C/3, are in parallel. The final equivalent capacitance between points A and B is:
Ceq = 2C/3 + 2C/3 = 4C/3.

VITEEE PCME Mock Test - 2 - Question 17

The fuse wire has

Detailed Solution for VITEEE PCME Mock Test - 2 - Question 17

Fuse wire : It is used in a circuit to control the maximum current flowing in circuit. It is a thin wire having high resistance and is made up of a material with low melting point.

VITEEE PCME Mock Test - 2 - Question 18

Starting from the rest, a body slides down a 45°inclined plane in twice the time it takes to slide down the same distance in the absence of friction. The coefficient of friction between the body and the inclined plane is

Detailed Solution for VITEEE PCME Mock Test - 2 - Question 18

n the presence of friction, acceleration, a = (gsinθ − μgcosθ)
∴ Time taken to slide down the incline,

In the absence of friction, time taken to slide down the incline, 
According to the question, t1 = 2t2

VITEEE PCME Mock Test - 2 - Question 19

When a charged particle moving with velocity is subjected to a magnetic field of induction , the force on it is non-zero. This implies that the angle between

Detailed Solution for VITEEE PCME Mock Test - 2 - Question 19

When a charged particle q is moving in a uniform magnetic field with velocity such that angle between and be θ,
Then the force experienced by the charge particle is
F = qvB sin θ
F = 0 for θ = 0° or 180°
Since force on charged particle is non-zero, so angle between and so θ van have any value other than zero and 180°.

VITEEE PCME Mock Test - 2 - Question 20

If the distance between Na+ and CI- ions in sodium chloride crystal is y pm, the length of the edge of the unit cell is

Detailed Solution for VITEEE PCME Mock Test - 2 - Question 20

In NaCl, Cl- forms the FCC lattice and Na+ is present in the octahedral void.
Therefore, along each edge, there are Cl- ions at the corners and a Na+ ion at the edge centre.
Hence, edge length (a) = 2(r of Na+ + r of Cl-) = 2y.

VITEEE PCME Mock Test - 2 - Question 21

The values of the reduction potentials of Cr3+ and Mn3+ are -0.41V and +1.51V, respectively. Choose the option that is inferred from the given factual information.

Detailed Solution for VITEEE PCME Mock Test - 2 - Question 21

1. Cr³⁺ + e⁻ → Cr²⁺, E° = –0.41 V

  • Negative E° value ⇒ Cr³⁺ is not easily reduced to Cr²⁺
  • So, Cr³⁺ is more stable than Cr²⁺

So, A: Cr³⁺ is less stable than Cr²⁺ is ❌ incorrect

2. Mn³⁺ + e⁻ → Mn²⁺, E° = +1.51 V

  • High positive value ⇒ Mn³⁺ is easily reduced, so it readily gains electrons
  • Therefore, Mn³⁺ acts as a strong oxidizing agent
    B: Mn³⁺ is a good oxidizing agent is correct

3. Cr²⁺ → Cr³⁺ + e⁻, E° = +0.41 V (reverse of reduction)

  • Since Cr²⁺ is easily oxidized, it acts as a good reducing agent, not oxidizing
    So, C: Cr²⁺ is a good oxidizing agent is false

4. Mn³⁺ → Mn²⁺, as E° is positive, the reverse reaction is less favorable
⇒ Mn²⁺ is more stable than Mn³⁺
So, D: Mn³⁺ is more stable than Mn²⁺ is false

VITEEE PCME Mock Test - 2 - Question 22

When heated with NH3 under pressure alone or in presence of zinc chloride phenols are converted into

Detailed Solution for VITEEE PCME Mock Test - 2 - Question 22

When phenol (C₆H₅OH) is heated with ammonia (NH₃) under high pressure and in the presence of ZnCl₂, a reduction and amination process occurs, where the –OH group is replaced by an –NH₂ group on the benzene ring.

This gives:
C₆H₅NH₂ → Aniline
This process is known as reductive amination of phenol.

VITEEE PCME Mock Test - 2 - Question 23

An alcohol on oxidation is found to give CH3COOH and CH3CH2COOH. The structure of the alcohol is

Detailed Solution for VITEEE PCME Mock Test - 2 - Question 23

Since the secondary alcohol on oxidation gives two different acids, acetic acid and propanoic acid, the alcohol is secondary alcohol and will contain 5 C atoms.

VITEEE PCME Mock Test - 2 - Question 24

The element, which exhibits both vertical and horizontal similarities are

Detailed Solution for VITEEE PCME Mock Test - 2 - Question 24

Transition elements due to similar (almost) sizes exhibit both vertical and horizontal similarities. Same electronic configuration can also be a reason for vertical similarities in these elements.

VITEEE PCME Mock Test - 2 - Question 25

A schematic plot in ln Keq versus inverse of temperature for a reaction is shown below. The reaction must be

Detailed Solution for VITEEE PCME Mock Test - 2 - Question 25

In given graph
 has slope > 0
Now, ΔH = −nRTlnkeq


⇒ ΔH < 0
∴ exothermic reaction

VITEEE PCME Mock Test - 2 - Question 26

Select the correct statement.

Detailed Solution for VITEEE PCME Mock Test - 2 - Question 26


Thus, they differ in magnetic moment

There are no unpaired electrons at nickel.
Thus, both A and B are correct

VITEEE PCME Mock Test - 2 - Question 27


Identify the final product in the above series

Detailed Solution for VITEEE PCME Mock Test - 2 - Question 27

Aniline on reaction with sulphuric acid give sulphanilic acid as shown below.

Sulphanilic acid gives 2,4,6-tribromophenol with bromine water. The reaction is shown below,

VITEEE PCME Mock Test - 2 - Question 28

Consider the graph:

Identify the correct option.

Detailed Solution for VITEEE PCME Mock Test - 2 - Question 28

ΔU - state function
Q - Path function
ΔU = Q + W
Since ΔUa = ΔUb, and W< WB (more negative), Qa ​< Qb​.
So, ΔUa​ = ΔUb​,Qa​ < Qb

VITEEE PCME Mock Test - 2 - Question 29

Pran and Khan start from their office and walk in opposite directions. Each of them walked for 10 km, after which Khan turns right and walks 15 km. How far are they now from each other?

Detailed Solution for VITEEE PCME Mock Test - 2 - Question 29

Let's suppose that Pran and Khan start from point A.

At origin (0,0): Pran walks west 10 km to P(-10, 0).

Khan walks east 10 km to (10, 0), turns right (south), walks 15 km to Q(10, -15).
Distance between them = = = = 25 km
Hence, they are 25 km away from each other.
So, 4th option is the answer.

Correct answer: D) 25 km

VITEEE PCME Mock Test - 2 - Question 30

If we write all the whole numbers from 200 to 400, then how many of these numbers contain the digit 7 exactly once?

Detailed Solution for VITEEE PCME Mock Test - 2 - Question 30

The numbers containing exactly one 7 in between 200 to 400 are:
207, 217, 227, 237, 247, 257, 267, 270, 271, 272, 273, 274,
275, 276, 278, 279, 287, 297, 307, 317, 327, 337, 347, 357,
367, 370, 371, 372, 373, 374, 375, 376, 378, 379, 387 and 397.
For every 10 numbers, there would be 1 number containing exactly one 7, and in 270's and 370's each, there would be 9 such numbers.
Hence, the total numbers containing the digit 7 exactly once are 36.

View more questions
1 videos|7 docs|63 tests
Information about VITEEE PCME Mock Test - 2 Page
In this test you can find the Exam questions for VITEEE PCME Mock Test - 2 solved & explained in the simplest way possible. Besides giving Questions and answers for VITEEE PCME Mock Test - 2, EduRev gives you an ample number of Online tests for practice
Download as PDF