CTET & State TET Exam  >  CTET & State TET Tests  >  प्रैक्टिस टेस्ट: गणित शिक्षा पद्धति - 1 - CTET & State TET MCQ

प्रैक्टिस टेस्ट: गणित शिक्षा पद्धति - 1 - CTET & State TET MCQ


Test Description

30 Questions MCQ Test - प्रैक्टिस टेस्ट: गणित शिक्षा पद्धति - 1

प्रैक्टिस टेस्ट: गणित शिक्षा पद्धति - 1 for CTET & State TET 2025 is part of CTET & State TET preparation. The प्रैक्टिस टेस्ट: गणित शिक्षा पद्धति - 1 questions and answers have been prepared according to the CTET & State TET exam syllabus.The प्रैक्टिस टेस्ट: गणित शिक्षा पद्धति - 1 MCQs are made for CTET & State TET 2025 Exam. Find important definitions, questions, notes, meanings, examples, exercises, MCQs and online tests for प्रैक्टिस टेस्ट: गणित शिक्षा पद्धति - 1 below.
Solutions of प्रैक्टिस टेस्ट: गणित शिक्षा पद्धति - 1 questions in English are available as part of our course for CTET & State TET & प्रैक्टिस टेस्ट: गणित शिक्षा पद्धति - 1 solutions in Hindi for CTET & State TET course. Download more important topics, notes, lectures and mock test series for CTET & State TET Exam by signing up for free. Attempt प्रैक्टिस टेस्ट: गणित शिक्षा पद्धति - 1 | 30 questions in 30 minutes | Mock test for CTET & State TET preparation | Free important questions MCQ to study for CTET & State TET Exam | Download free PDF with solutions
प्रैक्टिस टेस्ट: गणित शिक्षा पद्धति - 1 - Question 1

गणित पढ़ाने की प्रारंभिक अवस्था कौन सी है?

Detailed Solution for प्रैक्टिस टेस्ट: गणित शिक्षा पद्धति - 1 - Question 1

व्यस्त करना गणित पढ़ाने का पहला और प्रारंभिक चरण है, जिसमें शिक्षक बच्चे को सीखने की प्रक्रिया में तैयार करने या उसे व्यस्त करने का प्रयास करते हैं। गणित के किसी विशेष विषय की पढ़ाई करते समय, वह बच्चे को कुछ मानसिक या शारीरिक अन्वेषण गतिविधियों में व्यस्त करने में मदद कर सकते हैं।

प्रैक्टिस टेस्ट: गणित शिक्षा पद्धति - 1 - Question 2

गणित की कौन सी तकनीकें गणित में गति और सटीकता में सुधार करती हैं?

Detailed Solution for प्रैक्टिस टेस्ट: गणित शिक्षा पद्धति - 1 - Question 2

गणित के शिक्षण में ड्रिल और व्यायाम का एक महत्वपूर्ण स्थान है। गणित स्वयं अभ्यास और व्यायाम का विषय है। ड्रिल आत्म-शिक्षण और सुधार का एक अवसर प्रदान करती है, इसलिए गणित में गति और सटीकता ड्रिल कार्य के बिना संभव नहीं हो सकती।

प्रैक्टिस टेस्ट: गणित शिक्षा पद्धति - 1 - Question 3

खेलते समय रम चार डंडों से एक चतुष्भुज बनाता है और एक कॉपी में निम्नलिखित तालिका बनाता है:

चतुष्भुजों की संख्या 1 2 3
डंडों की संख्या 4 8 12

उसकी क्रिया से कौन सा निष्कर्ष निकाला जा सकता है?

Detailed Solution for प्रैक्टिस टेस्ट: गणित शिक्षा पद्धति - 1 - Question 3

रम खेल के साथ गणित कर रहा है।

प्रैक्टिस टेस्ट: गणित शिक्षा पद्धति - 1 - Question 4

गणित के छात्रों का पोर्टफोलियो क्या हो सकता है?

Detailed Solution for प्रैक्टिस टेस्ट: गणित शिक्षा पद्धति - 1 - Question 4

छात्रों के पास असाइनमेंट, कार्यपत्रक, गणित प्रयोगशाला गतिविधि का रिकॉर्ड, किसी भी गणितीय मॉडल का विवरण, गणितीय पोस्टर और कार्ड, किसी भी नए प्रकार की समस्या का प्रयास किया गया या सामान्यीकरण किया गया, आदि का रिकॉर्ड हो सकता है। इसलिए, विकल्प C सही है।

प्रैक्टिस टेस्ट: गणित शिक्षा पद्धति - 1 - Question 5

कौन सी स्केल अंतराल स्केल की विशेषताओं को दर्शाती है?

Detailed Solution for प्रैक्टिस टेस्ट: गणित शिक्षा पद्धति - 1 - Question 5

अनुपात स्केल मापने का सबसे परिष्कृत स्तर है और इसमें एक परिभाषित शून्य बिंदु और मापने की एक समान इकाइयाँ होती हैं। यह एक वैज्ञानिक, विश्वसनीय और बुद्धिमानी से विकसित स्केल है। इसमें अंतराल स्केल की विशेषताएँ होती हैं। इस स्केल के तहत डेटा को अंकगणितीय संचालन में subjected किया जा सकता है।

प्रैक्टिस टेस्ट: गणित शिक्षा पद्धति - 1 - Question 6

________ बच्चे वे बच्चे हैं जो अपनी बौद्धिक वृद्धि और विकास के मामले में औसत से बहुत ऊपर हैं।

Detailed Solution for प्रैक्टिस टेस्ट: गणित शिक्षा पद्धति - 1 - Question 6

प्रतिभाशाली बच्चे वे बच्चे हैं जो अपनी बौद्धिक वृद्धि और विकास के मामले में औसत से बहुत ऊपर हैं। वे किसी भी मूल्यवान मानव प्रयास के क्षेत्र में लगातार उत्कृष्ट, प्रशंसनीय और अद्वितीय प्रदर्शन प्रदर्शित करते हैं।

प्रैक्टिस टेस्ट: गणित शिक्षा पद्धति - 1 - Question 7

पांच चरणों की पाठ योजना प्रणाली किसने शुरू की?

Detailed Solution for प्रैक्टिस टेस्ट: गणित शिक्षा पद्धति - 1 - Question 7

5 चरणों की पाठ योजना प्रत्यक्ष निर्देश के लिए सबसे प्रभावी और बहुपरकार के टेम्पलेट में से एक प्रदान करती है। यह छात्रों को नए सामग्री को सीखने और समझने में मदद करती है कि कैसे व्यक्तिगत पाठ उनके अध्ययन में फिट बैठता है। इसके अतिरिक्त, यह शिक्षकों को छात्र की समझ पर नज़र रखने में मदद करती है। इसमें शामिल पांच चरण हैं: पूर्वानुमान सेट, नए सामग्री का परिचय, निर्देशित अभ्यास, स्वतंत्र अभ्यास, और समापन। पांच चरणों की पाठ योजना प्रणाली हर्बर्ट द्वारा विकसित की गई थी।

प्रैक्टिस टेस्ट: गणित शिक्षा पद्धति - 1 - Question 8

जब शिक्षक 'आकृतियों' का शिक्षण कर रहे होते हैं, तो वे ऐतिहासिक स्थलों की यात्रा की योजना कैसे बना सकते हैं?

Detailed Solution for प्रैक्टिस टेस्ट: गणित शिक्षा पद्धति - 1 - Question 8

बाहरी कक्षा की गतिविधियों का नियमित कक्षाओं की तुलना में अधिक प्रभाव होता है। आकृतियाँ किसी भी वास्तुकला का एक अभिन्न हिस्सा हैं और ऐसी यात्राएँ विभिन्न विषयों के बीच संबंधों को प्रोत्साहित करती हैं, इसलिए, एक शिक्षक 'आकृतियों' को सिखाने के लिए ऐतिहासिक स्थलों की यात्रा की योजना बना सकता है।

प्रैक्टिस टेस्ट: गणित शिक्षा पद्धति - 1 - Question 9

नैदानिक परीक्षण क्या हैं?

Detailed Solution for प्रैक्टिस टेस्ट: गणित शिक्षा पद्धति - 1 - Question 9

नैदानिक परीक्षण मानकीकृत और गैर-मानकीकृत दोनों होते हैं। नैदानिक परीक्षण छात्रों की किसी विषय की समझ को मापते हैं। यह यह आकलन करने में मदद करता है कि क्या छात्र वे चीजें सीख रहे हैं जो उन्हें सीखनी चाहिए। इसका उपयोग छात्रों की सीखने की कठिनाइयों को निर्धारित करने के लिए किया जाता है, चाहे वे मानकीकृत या गैर-मानकीकृत परीक्षणों के माध्यम से हों।

प्रैक्टिस टेस्ट: गणित शिक्षा पद्धति - 1 - Question 10

बच्चों में गिनती के कौशल को विकसित करने के लिए, निम्नलिखित में से कौन सी पूर्व संख्या अवधारणा के रूप में सीखने की आवश्यकता नहीं है?

Detailed Solution for प्रैक्टिस टेस्ट: गणित शिक्षा पद्धति - 1 - Question 10

बच्चों में गिनती के कौशल को विकसित करने के लिए क्रमबद्धता, समूह बनाना, एक से एक संबंध, और छंटाई को पूर्व संख्या अवधारणाओं के रूप में सीखा जाना आवश्यक है। संख्याओं के नाम यादृच्छिक रूप से सुनाना गिनती के कौशल को विकसित करने के लिए आवश्यक नहीं है।

प्रैक्टिस टेस्ट: गणित शिक्षा पद्धति - 1 - Question 11

निम्नलिखित आकृति में कितने आयत हैं?

उपरोक्त प्रश्न छात्र के ज्ञान का परीक्षण कर रहा है।

Detailed Solution for प्रैक्टिस टेस्ट: गणित शिक्षा पद्धति - 1 - Question 11

दिए गए प्रश्न में छात्रों को आकृति में आयतों की गिनती करनी है, पहले छात्र को समझना होगा कि आयत क्या है और उसमें रेखाओं का उपयोग कैसे किया जाता है। इसलिए उपरोक्त प्रश्न छात्र की समझ का परीक्षण कर रहा है।

प्रैक्टिस टेस्ट: गणित शिक्षा पद्धति - 1 - Question 12

फरहान स्कूल की पुस्तकालय में गया और पाया कि कहानी अनुभाग में रखी 100 पुस्तकें खराब हो गई हैं। 20 पुस्तकें गायब हैं। 219 पुस्तकें शेल्फ में रखी हैं और 132 छात्रों को जारी की गई हैं। पुस्तकालय में कुल कितनी कहानी की पुस्तकें थीं? इस प्रश्न के माध्यम से शिक्षक निम्नलिखित मूल्य सिखा सकते हैं

Detailed Solution for प्रैक्टिस टेस्ट: गणित शिक्षा पद्धति - 1 - Question 12

471 पुस्तकों में से, 100 पुस्तकें खराब हो गई हैं; इसलिए शिक्षक का यह प्रश्न पूछने का तरीका यह है कि वे छात्रों को पुस्तकों की देखभाल करने के लिए कहें क्योंकि 100 पुस्तकें खराब हो गई हैं जो लापरवाही के कारण हुई हैं। यदि इन पुस्तकों की उचित देखभाल की जाती है, तो वे कभी खराब नहीं होंगी।

प्रैक्टिस टेस्ट: गणित शिक्षा पद्धति - 1 - Question 13

किसी कक्षा के स्तर के अनुसार सामग्री के विकार का निदान करने के लिए ____।

Detailed Solution for प्रैक्टिस टेस्ट: गणित शिक्षा पद्धति - 1 - Question 13

शैक्षिक निदान परीक्षण अध्ययन सामग्री या अध्ययन सामग्री से संबंधित होते हैं जो शिक्षा के विशिष्ट स्तर या मानक के लिए डिज़ाइन किए गए होते हैं। ये परीक्षण कक्षा के स्तर के अनुसार सामग्री के विकार का निदान करते हैं।

प्रैक्टिस टेस्ट: गणित शिक्षा पद्धति - 1 - Question 14

NCF 2005 के अनुसार

“बच्चों की गणितीकरण की क्षमताओं का विकास गणित शिक्षा का मुख्य लक्ष्य है। स्कूल गणित का संकीर्ण उद्देश्य 'उपयोगी' क्षमताओं का विकास करना है।”

यहाँ गणितीकरण का तात्पर्य है बच्चे की क्षमताओं का विकास करना।

Detailed Solution for प्रैक्टिस टेस्ट: गणित शिक्षा पद्धति - 1 - Question 14

यहां गणितीयकरण का तात्पर्य है बच्चे की क्षमताओं को विकसित करना, ताकि वह गणितीय रूप से सोचने और तर्क करने, धारणाओं को उनके तार्किक निष्कर्षों तक पहुँचाने और अमूर्तता को संभालने में सक्षम हो। इसलिए, विकल्प D सही है।

प्रैक्टिस टेस्ट: गणित शिक्षा पद्धति - 1 - Question 15

निम्नलिखित में से कौन सा अनुशासनात्मक शिक्षण का कार्य नहीं है?

Detailed Solution for प्रैक्टिस टेस्ट: गणित शिक्षा पद्धति - 1 - Question 15

अनुशासनात्मक शिक्षण का कार्य छात्रों का मूल्यांकन करना और उन्हें डांटना नहीं है। इसका कार्य है गणित शिक्षण के मानक को बढ़ाना, शिक्षा प्रक्रिया में अपव्यय को टालना, तथा छात्रों की सीखने में कठिनाइयों को हल करना।

प्रैक्टिस टेस्ट: गणित शिक्षा पद्धति - 1 - Question 16

सलमान ने हल किया - 3 – 4 = 7। यह त्रुटि की गई है

Detailed Solution for प्रैक्टिस टेस्ट: गणित शिक्षा पद्धति - 1 - Question 16

सलमान पूर्णांकों के जोड़ने के सिद्धांत के बारे में स्पष्ट नहीं है।

प्रैक्टिस टेस्ट: गणित शिक्षा पद्धति - 1 - Question 17

एक कक्षा में छात्रों से ऊर्ध्वाधर विपरीत कोणों के बीच संबंध स्थापित करने के लिए कहा गया। वे विभिन्न आकृतियाँ बनाते हैं, कोणों को मापते हैं और देखते हैं कि ऊर्ध्वाधर विपरीत कोण समान होते हैं। इस मामले में, छात्रों का सीखना वान हीले के अनुसार किस स्तर पर है?

Detailed Solution for प्रैक्टिस टेस्ट: गणित शिक्षा पद्धति - 1 - Question 17

विश्लेषणात्मक स्तर पर, बच्चे अपनी दृश्यता का विश्लेषण करने में सक्षम होते हैं। वे ज्यामितीय आकृतियों और आकारों को पहचानने में निर्णय लेते हैं, न केवल उनके समग्र रूप के आधार पर, बल्कि उनकी विशिष्ट विशेषताओं पर भी ध्यान देते हुए। इस विधि से, किसी समस्या के कठिन भागों का विश्लेषण किया जा सकता है ताकि दी गई समस्या का समाधान खोजा जा सके।

प्रैक्टिस टेस्ट: गणित शिक्षा पद्धति - 1 - Question 18

गणित शिक्षा का पाठ्यक्रम में स्थान दो मुख्य चिंताओं पर आधारित है:

Detailed Solution for प्रैक्टिस टेस्ट: गणित शिक्षा पद्धति - 1 - Question 18

हमारे गणित शिक्षा के पाठ्यक्रम में स्थान पर विचार इन दो मुख्य चिंताओं पर आधारित हैं: गणित शिक्षा हर छात्र के मन को सक्रिय करने के लिए क्या कर सकती है, और यह छात्र के संसाधनों को कैसे मजबूत कर सकती है। हम स्कूल में गणित का अपना दृष्टिकोण व्यक्त करते हैं, मुख्य चिंताओं के क्षेत्रों को स्पष्ट करने का प्रयास करते हैं, और इन दो दृष्टिकोणों के आधार पर चिंताओं का समाधान करने के लिए सिफारिशें प्रदान करते हैं। यह सच है कि कक्षा में सिखाई गई अधिकांश कौशल रोजमर्रा की जिंदगी में उपयोगी होती हैं। छात्रों द्वारा स्कूल में बिताया गया समय समस्या समाधान और विश्लेषणात्मक कौशल में, उन्हें जीवन में विभिन्न समस्याओं का सामना करने में मदद करता है।

प्रैक्टिस टेस्ट: गणित शिक्षा पद्धति - 1 - Question 19

वस्तुनिष्ठ प्रकार के परीक्षण की सबसे महत्वपूर्ण विशेषताएँ क्या हैं?

Detailed Solution for प्रैक्टिस टेस्ट: गणित शिक्षा पद्धति - 1 - Question 19

वस्तुनिष्ठ प्रकार के परीक्षण की सबसे महत्वपूर्ण विशेषताएँ इसकी विश्वसनीयता, भेदभाव की शक्ति और वस्तुनिष्ठता हैं।

प्रैक्टिस टेस्ट: गणित शिक्षा पद्धति - 1 - Question 20

यदि एक शिक्षक को अंकगणित में "संयुक्त ब्याज" विषय पढ़ाना है, तो इसके अध्ययन के उद्देश्यों को निम्नलिखित होना चाहिए:

Detailed Solution for प्रैक्टिस टेस्ट: गणित शिक्षा पद्धति - 1 - Question 20

उपरोक्त प्रश्न में इसका अधिगम लक्ष्य ज्ञान, समझ और अनुप्रयोग होना चाहिए। ज्ञान का लक्ष्य व्यवहारिक शब्दों में क्रियात्मक क्रिया “परिभाषित करें” की मदद से इस प्रकार लिखा जा सकता है: शिक्षार्थी "संयुक्त ब्याज" की परिभाषा देने में सक्षम हैं। समझ का लक्ष्य व्यवहारिक शब्दों में क्रियात्मक क्रिया “व्याख्या करें” की मदद से इस प्रकार लिखा जा सकता है: शिक्षार्थी "संयुक्त ब्याज" की व्याख्या कर सकते हैं। अनुप्रयोग का लक्ष्य व्यवहारिक शब्दों में क्रियात्मक क्रिया “गणना करें” या “उपयोग करें” या “खोजें” की मदद से इस प्रकार लिखा जा सकता है: शिक्षार्थी संयुक्त ब्याज की गणना करने में सक्षम हैं या शिक्षार्थी संयुक्त ब्याज से संबंधित समस्याओं का समाधान खोज सकते हैं।

प्रैक्टिस टेस्ट: गणित शिक्षा पद्धति - 1 - Question 21

उच्च स्तर पर समझने का संबंध किससे है?

Detailed Solution for प्रैक्टिस टेस्ट: गणित शिक्षा पद्धति - 1 - Question 21

विश्लेषण उच्च स्तर पर समझने का संदर्भ है। यह एक जटिल संज्ञानात्मक प्रक्रिया है जिसमें ज्ञान, विचार, तथ्य, सिद्धांत या सिद्धांत शामिल होते हैं।

प्रैक्टिस टेस्ट: गणित शिक्षा पद्धति - 1 - Question 22

निर्देश: निम्नलिखित प्रश्न का उत्तर सही/सबसे उपयुक्त विकल्प चुनकर दें: निम्नलिखित में से "संख्या समझ" का एक पहलू कौन सा है?

Detailed Solution for प्रैक्टिस टेस्ट: गणित शिक्षा पद्धति - 1 - Question 22

एक-से-एक संबंध “संख्या की भावना” का एक पहलू है। यह नर्सरी के बच्चों के लिए एक बुनियादी गणितीय कौशल है। इस कौशल में, एक बच्चा 1 से 10 तक गिनना शुरू करता है, कभी-कभी वह एक अंक को भूल सकता है या किसी अंक को दो बार दोहरा सकता है। तब उन्हें सेट को मिलाकर गिनने और संख्या के मात्रा की तुलना करने के लिए कहा जाता है, और 10 तक वस्तुओं की गिनती करने के लिए भी।

प्रैक्टिस टेस्ट: गणित शिक्षा पद्धति - 1 - Question 23

निर्देश: निम्नलिखित प्रश्न का उत्तर सही/सबसे उपयुक्त विकल्प चुनकर दें:

एक शिक्षक कक्षा I में 'संख्याएँ' विषय पर शिक्षार्थियों के साथ चर्चा कर रहे हैं। निम्नलिखित में से कौन सा दृष्टिकोण शिक्षक द्वारा अपनाया जाना सबसे उपयुक्त है?

Detailed Solution for प्रैक्टिस टेस्ट: गणित शिक्षा पद्धति - 1 - Question 23

संख्याओं का परिचय केवल तब किया जाना चाहिए जब शिक्षार्थियों को गिनती का अनुभव हो। गिनती करना एक बच्चे का गणित में पहला कदम है, और यह उस अनुशासन का सबसे मौलिक विचार है। गिनती बच्चों के लिए एक महत्वपूर्ण व्यायाम है। वे केवल तभी संख्याएँ सीखेंगे जब उनके पास गिनती का ज्ञान हो, यह संख्याओं की ओर एक कदम की तरह है और यह उन्हें संख्याओं के बीच संबंधों की खोज करने में मदद करता है। इसलिए सही विकल्प D है।

प्रैक्टिस टेस्ट: गणित शिक्षा पद्धति - 1 - Question 24

कौन सा अध्ययन सुधारात्मक शिक्षण के लिए आसिमिलेशन के रूप में जाना जाता है?

Detailed Solution for प्रैक्टिस टेस्ट: गणित शिक्षा पद्धति - 1 - Question 24

निगरानी अध्ययन वह अध्ययन है जिसमें छात्रों द्वारा सौंपे गए कार्य को शिक्षक की उपस्थिति और सीधे निगरानी में किया जाता है। निगरानी अध्ययन छात्रों के आत्म-अध्यान के लिए एक औपचारिक और गहन वातावरण उत्पन्न करता है, क्योंकि छात्र अपने शिक्षक के साथ परामर्श करते हुए स्वतंत्र रूप से काम करने के लिए स्वतंत्र होते हैं। इस तकनीक में, जरूरतमंद छात्रों को तात्कालिक सहायता और मार्गदर्शन मिलता है। छात्रों की गलतियों को तात्कालिक रूप से ठीक किया जा सकता है और कठिनाइयों को तुरंत हल किया जा सकता है। इस तकनीक में छात्रों को उन्हें जो सिखाया गया है, उसे आत्मसात करने के लिए समय दिया जाना आवश्यक है।

प्रैक्टिस टेस्ट: गणित शिक्षा पद्धति - 1 - Question 25

एक शिक्षक ने छात्रों से पत्तियाँ इकट्ठा करने और सममिति पैटर्न की पहचान करने के लिए कहा। यह कार्य शिक्षक के प्रयासों को दर्शाता है

Detailed Solution for प्रैक्टिस टेस्ट: गणित शिक्षा पद्धति - 1 - Question 25

छात्रों के गणितीय संवाद का विकास प्राथमिक, जूनियर और मध्य श्रेणियों में सटीकता और परिष्कार में बदलाव लाता है, फिर भी अंतर्निहित विशेषताएँ सभी श्रेणियों में लागू होती हैं। पूरे वर्ग चर्चा के दौरान, शिक्षक इन विशेषताओं का उपयोग छात्रों के गणितीय विचारों की प्रस्तुति की व्याख्या और मूल्यांकन के लिए और चर्चा के बिंदुओं को निर्धारित करने के लिए मार्गदर्शक के रूप में कर सकते हैं।

प्रैक्टिस टेस्ट: गणित शिक्षा पद्धति - 1 - Question 26

जब 'आकृतियों' की शिक्षा दी जाती है, तो एक शिक्षक ऐतिहासिक स्थलों की यात्रा की योजना कैसे बना सकता है?

Detailed Solution for प्रैक्टिस टेस्ट: गणित शिक्षा पद्धति - 1 - Question 26

बाहरी कक्षा की गतिविधियों का नियमित कक्षाओं की तुलना में अधिक प्रभाव पड़ता है। आकृतियाँ किसी भी वास्तुकला का एक अभिन्न हिस्सा हैं और ऐसी यात्राएँ विभिन्न विषयों के बीच संबंधों को प्रोत्साहित करती हैं, इसलिए एक शिक्षक 'आकृतियों' को सिखाने के लिए ऐतिहासिक स्थलों की यात्रा की योजना बना सकता है।

प्रैक्टिस टेस्ट: गणित शिक्षा पद्धति - 1 - Question 27

नीचे कक्षा V की पाठ्यपुस्तक से एक समस्या दी गई है: "चार खंभे हैं जिनकी लंबाई क्रमशः 105 सेंटीमीटर, 115 सेंटीमीटर, 150 सेंटीमीटर और 235 सेंटीमीटर है। यदि इन्हें समान लंबाई के टुकड़ों में काटा जाना है, तो प्रत्येक टुकड़े की अधिकतम लंबाई क्या होगी?" यह प्रश्न पूछा गया है

Detailed Solution for प्रैक्टिस टेस्ट: गणित शिक्षा पद्धति - 1 - Question 27

यह प्रश्न सीखे गए सिद्धांतों का उपयोग करके समस्या समाधान कौशल को बढ़ाने के लिए पूछा गया है। इसलिए, विकल्प C सही है।

प्रैक्टिस टेस्ट: गणित शिक्षा पद्धति - 1 - Question 28

यदि एक बच्चा यह पहचानता है कि 'सभी वर्ग आयत हैं, लेकिन सभी आयत वर्ग नहीं हैं', तो उस बच्चे में कौन सी विशेषता है?

Detailed Solution for प्रैक्टिस टेस्ट: गणित शिक्षा पद्धति - 1 - Question 28

यदि एक बच्चा यह पहचानता है कि 'सभी वर्ग आयत हैं, लेकिन सभी आयत वर्ग नहीं हैं', तो वह ज्यामितीय आकारों और आकृतियों के प्रकारों के बीच संबंध को पहचानने लगता है।

प्रैक्टिस टेस्ट: गणित शिक्षा पद्धति - 1 - Question 29

निर्देश: सही / सबसे उपयुक्त विकल्प चुनकर निम्नलिखित प्रश्न का उत्तर दें।

निम्नलिखित में से कौन सा कथन सत्य नहीं है गणितीय प्रमेय के बारे में?

Detailed Solution for प्रैक्टिस टेस्ट: गणित शिक्षा पद्धति - 1 - Question 29

गणित में, एक प्रमेय एक ऐसा कथन है जिसे पहले से स्थापित कथनों, जैसे अन्य प्रमेयों के आधार पर सिद्ध किया गया है, और सामान्यतः स्वीकार किया गया है, जैसे स्वयम सिद्धांत। एक प्रमेय का प्रतिनिधित्व एक तार्किक परिणाम है। यह अनुक्रम के रूप में नहीं हो सकता है।

प्रैक्टिस टेस्ट: गणित शिक्षा पद्धति - 1 - Question 30

निर्देश:निम्नलिखित प्रश्न का उत्तर सही / सबसे उपयुक्त विकल्प चुनकर दें।

इस प्रमेय पर विचार करें –
“यदि   विषम है, तो n विषम है।”
इसे इस तरह से सिद्ध किया जा सकता है:

Detailed Solution for प्रैक्टिस टेस्ट: गणित शिक्षा पद्धति - 1 - Question 30

उपरोक्त प्रमेय को विरोधाभास द्वारा प्रमाणित किया जा सकता है। इसमें यह मान लेना शामिल है कि विपरीत कथन सत्य है, और फिर यह दिखाना कि ऐसी धारणा एक विरोधाभास की ओर ले जाती है और उसके परिणाम की कोई संभावना नहीं है।

Information about प्रैक्टिस टेस्ट: गणित शिक्षा पद्धति - 1 Page
In this test you can find the Exam questions for प्रैक्टिस टेस्ट: गणित शिक्षा पद्धति - 1 solved & explained in the simplest way possible. Besides giving Questions and answers for प्रैक्टिस टेस्ट: गणित शिक्षा पद्धति - 1, EduRev gives you an ample number of Online tests for practice
Download as PDF