SSC CGL Exam  >  SSC CGL Tests  >  Quantitative Aptitude for SSC CGL  >  MCQ: Indices and Surds - 2 - SSC CGL MCQ

MCQ: Indices and Surds - 2 - SSC CGL MCQ


Test Description

15 Questions MCQ Test Quantitative Aptitude for SSC CGL - MCQ: Indices and Surds - 2

MCQ: Indices and Surds - 2 for SSC CGL 2025 is part of Quantitative Aptitude for SSC CGL preparation. The MCQ: Indices and Surds - 2 questions and answers have been prepared according to the SSC CGL exam syllabus.The MCQ: Indices and Surds - 2 MCQs are made for SSC CGL 2025 Exam. Find important definitions, questions, notes, meanings, examples, exercises, MCQs and online tests for MCQ: Indices and Surds - 2 below.
Solutions of MCQ: Indices and Surds - 2 questions in English are available as part of our Quantitative Aptitude for SSC CGL for SSC CGL & MCQ: Indices and Surds - 2 solutions in Hindi for Quantitative Aptitude for SSC CGL course. Download more important topics, notes, lectures and mock test series for SSC CGL Exam by signing up for free. Attempt MCQ: Indices and Surds - 2 | 15 questions in 15 minutes | Mock test for SSC CGL preparation | Free important questions MCQ to study Quantitative Aptitude for SSC CGL for SSC CGL Exam | Download free PDF with solutions
MCQ: Indices and Surds - 2 - Question 1

If a2x + 2 = 1,where a is a positive real number other than 1, then x = ?

Detailed Solution for MCQ: Indices and Surds - 2 - Question 1

Given that, a2x + 2 = 1
Apply the algebra Law,
p0 = 1

⇒ a2x + 2 = a0
Apply the algebra law
pX = pY then X will be equal to Y. means X = Y;

⇒ 2x + 2 = 0
⇒ x = -2/2 = -1

MCQ: Indices and Surds - 2 - Question 2

If {(24)1/2}? = 256, find the value of '?'.

Detailed Solution for MCQ: Indices and Surds - 2 - Question 2

Given that, (24x 1/2)? = 256
Apply the law of Fractional Exponents and Laws of Exponents
⇒ (22)? = 28
⇒ 22 x ? = 28
⇒ 2 x ? = 8
∴ ? = 8/2 = 4

MCQ: Indices and Surds - 2 - Question 3

Third power of 4 is equivalent to :

Detailed Solution for MCQ: Indices and Surds - 2 - Question 3

Third power of 4 = 43 = 4 × 4 × 4 = 64

MCQ: Indices and Surds - 2 - Question 4

What is the difference between the third power of 2 and the second power of 3?

Detailed Solution for MCQ: Indices and Surds - 2 - Question 4

Third power of 2 = 23 = 2 × 2 × 2 = 8
And second power of 3 = 32 = 3 × 3 = 9
∴ Difference = 9 – 8 = 1

MCQ: Indices and Surds - 2 - Question 5

Find the value of m - n, if ( 9n x 32 x (3-n/2)-2 - (27)n ) / ( 33m x 23 ) = 1/27 ?

Detailed Solution for MCQ: Indices and Surds - 2 - Question 5

( 9n x 32 x (3-n/2)-2 - (27)n ) / ( 33m x 23 ) = 1/27
⇒ ( 32n x 32 x 3n - 33n) / ( 33m x 23 ) = 1/27
⇒ ( 32n + n x 32 - 33n) / ( 33m x 23 )= 1/27
⇒ ( 33n x 32 - 33n) / ( 33m x 23 ) = 1/27
⇒ 33n( 32 - 1) / ( 33m x 8 ) = 1/27
⇒ 33n( 9 - 1) / (33m x 8 ) = 1/27
⇒ ( 33n x 8 ) / (33m x 8 ) = 1/27
⇒ 33n / 33m = 1/27
⇒ 33n - 3m = 1/33
⇒ 33( n - m ) = 3-3
3(n - m) = -3
or n - m = -1
or m - n = 1

MCQ: Indices and Surds - 2 - Question 6

If 16 x 8n + 2 = 2m, then m is equal to

Detailed Solution for MCQ: Indices and Surds - 2 - Question 6

Given that 16 x 8n + 2 = 2m

Apply the law of Fractional Exponents and Laws of Exponents
if a multiply three times a x a x a then
a x a x a = a3
if a multiply two times a x a then
a x a = a2
if a multiply n times a x a x a x....up to n times, then
a x a x a x a ......up to n times = an
⇒ (2)4 x 23 x (n+2) = 2m
⇒ (2)4 x 23n+6 = 2m
aman = am+n
⇒ (2)(4 + 3n + 6) = 2m
⇒ (2)(3n + 10) = 2m
if pX = pY then X will be equal to Y. means X = Y;
On comparing, we get
3n + 10 = m
⇒ m = 3n + 10;

MCQ: Indices and Surds - 2 - Question 7

If x - 1 + 2 x + 1 = 320, then find the value of x ?

Detailed Solution for MCQ: Indices and Surds - 2 - Question 7

∵ 2x - 1 + 2x + 1 = 320
Apply the law of Algebra
⇒ 2x - 1(1 + 2 2 ) = 320
⇒ 2x - 1(1 + 4 ) = 320
⇒ 2x - 1 x 5 = 320
⇒ 2x - 1 = 64 = 2 x 2 x 2 x 2 x 2 x 2
⇒ 2x - 1 = 26
if pX = pY then X will be equal to Y. means X = Y;
⇒ x - 1 = 6
∴ x = 7

MCQ: Indices and Surds - 2 - Question 8

Find the value of (10)200 ÷ (10)196 .

Detailed Solution for MCQ: Indices and Surds - 2 - Question 8

Given equation is
(10)200 ÷ (10)196
Apply the law of Algebra
am ÷ an = am ? n

= (10)200 - 196
= 104
= 10000

MCQ: Indices and Surds - 2 - Question 9

Evaluate ( 0.00032)2/5

Detailed Solution for MCQ: Indices and Surds - 2 - Question 9

Given that
(0.00032)2/5 = (32/100000)2/5
Solve the equation by algebra Law
= (25/105)2/5
= {(2/10)5}2/5
= (2/10)5x2/5
= (1/5)2 = 1/25

MCQ: Indices and Surds - 2 - Question 10

 

Value of ? in expression
78.9 ÷ (343)1.7 x (49)4.8 = 7? is

Detailed Solution for MCQ: Indices and Surds - 2 - Question 10

78.9 ÷ (343)1.7 x (49)4.8 = 7?
Apply the law of Fractional Exponents and Laws of Exponents
(am)(an) = am+n
am÷an=am?n
am/an=am?n
(am)n = amn
78.9 ÷ (343)1.7 x (49)4.8 = 7?
⇒ 78.9 ÷ (73)1.7 x (72)4.8 = 7?
⇒ 78.9 ÷ 75.1 x 79.6 = 7?
⇒ 78.9 - 5.1 + 9.6 = 7?
⇒ 718.5 - 5.1 = 7?
∴ ? = 13.4

MCQ: Indices and Surds - 2 - Question 11

If 3x - 3x-1 = 18, then xx is equal to

Detailed Solution for MCQ: Indices and Surds - 2 - Question 11

∵ 3x - 3x - 1 = 18
⇒ 3x - 1(3 - 1) = 18
⇒ 3x - 1(2) = 18
⇒ 3x - 1 = 18/2
⇒ 3x - 1 = 9
⇒ 3x - 1 = 32
Apply the Algebra law,
If aX = aY then X will be equal to Y.
means X = Y;
⇒ x - 1 = 2
⇒ x = 3
Then xx = (3)3 = 27

MCQ: Indices and Surds - 2 - Question 12

If 2x - 1 + 2x + 1 = 2560, find the value of x.

Detailed Solution for MCQ: Indices and Surds - 2 - Question 12

2x - 1 + 2x + 1 = 2560
2x - 1 + 2x - 1 + 2 = 2560
Apply the Law of Algebra
2x - 1 + 2x - 1 x 2 2 = 2560
⇒ 2x - 1 ( 1 + 22 ) = 2560
⇒ 2x - 1 = 2560/5 = 512 = 2 x 2 x 2 x 2 x 2 x 2 x 2 x 2 x 2
⇒ 2x - 1 = 29
 x - 1 = 9
∴ = 9 + 1 = 10

MCQ: Indices and Surds - 2 - Question 13

if ax = b, by= c and xyz = 1, then what is the value of cz ?

Detailed Solution for MCQ: Indices and Surds - 2 - Question 13

Given, xyz = 1, ax = b, by = c
Now, b = ax
Apply the law of algebra .
Take the power y of both side equation.
⇒ by= axy
Take the power z of both side equation.
⇒ byz = axyz
⇒ ( by )z = axyz
Replace the by with c and xyz with as per given equation,
⇒ cz = a

MCQ: Indices and Surds - 2 - Question 14

Find the quotient when (a-1 - 1) is divided by (a - 1).

Detailed Solution for MCQ: Indices and Surds - 2 - Question 14

Given equation is
a-1 - 1
Apply the law of Fractional Exponents and Laws of Exponents
x-y = 1/xy
⇒ a-1 - 1 = 1/a - 1
⇒ a-1 - 1 = (1 - a)/a
Now divide by a - 1 in above equation,
⇒ ( a-1 - 1 ) ÷ (a - 1) = (1 - a)/a ÷ (a - 1)
⇒ ( a-1 - 1 ) ÷ (a - 1) = (1 - a)/a x 1/ (a - 1)
⇒ ( a-1 - 1 ) ÷ (a - 1) = -1x (a - 1)/a x 1/ (a - 1)
⇒ ( a-1 - 1 ) ÷ (a - 1) = -1/a
∴ Required quotient = -1/a.

MCQ: Indices and Surds - 2 - Question 15

What is the value of a5 × a7?

Detailed Solution for MCQ: Indices and Surds - 2 - Question 15

a5 × a= a5 + 7 = a12

314 videos|170 docs|185 tests
Information about MCQ: Indices and Surds - 2 Page
In this test you can find the Exam questions for MCQ: Indices and Surds - 2 solved & explained in the simplest way possible. Besides giving Questions and answers for MCQ: Indices and Surds - 2, EduRev gives you an ample number of Online tests for practice
314 videos|170 docs|185 tests
Download as PDF