If the work done by p men in (p + 2) days is to the work done by (p + 4) men in (p – 1) days is in the ratio 1 : 1, then the value of p is
If p and q are positive integers then √2 always lies between:
1 Crore+ students have signed up on EduRev. Have you? Download the App |
Monthly incomes of E and R are in the ratio 1 : 3 and their expenses are in the ratio 19 : 40. E saves Rs. 18,860 less than that R and in total they save Rs. 36,020. Income of E and R respectively are:
The incomes of Sheldon, Leonard, and Howardare in the ratio of 4 : 5 : 6 respectively and their spending are in the ratio of 6 : 7 : 8 respectively. If Sheldon saves one fourth his income, then the savings of Sheldon, Leonard, and Howardare in the ratio:
A vessel contains p litres of wine and another vessel contains q litres of water. r litres are taken out of each vessel and transferred to the other. If r X (p + q) = pq. If A and B are the respective values of the amount of wine contained in the respective containers after this operation, then what can be said about the relationship between A and B.
The volume of a pyramid varies jointly as its height and the area of its base; and when the area of the base is 60 square dm and the height 14 dm, the volume is 280 cubic dm. What is the area of the base of a pyramid whose volume is 390 cubic dm and whose height is 26 dm?
The expenses of an all boys’ institute are partly constant and partly vary as the number of boys. The expenses were ` 10,000 for 150 boys and ` 8400 for 120 boys. What will the expenses be when there are 330 boys?
Total expenses of running the hostel at IIM Ahmedabad are partly fixed and partly varying linearly with the number of boarders. The average expense per boarder is Rs.70 when there are 25 borders and Rs.60 when there are 50 borders. What is the average expense per border when there are 100 borders?
An alloy of gold and silver is taken in the ratio of 1 : 2, and another alloy of the same metals is taken in the ratio of 2 : 3. How many parts of the two al- loys must be taken to obtain a new alloy consisting of gold and silver that are in the ratio 3 : 5?
(b)3 and 5
The sum of three numbers x, y, z is 5000. If we reduce the first number by 50, the second number by 100, and the third number by 150, then the new ratio of x & y = 4 : 5 & the new ratio of y & z =3 : 4. What is the value of x + y ?