Description

This mock test of Test: Biot Savart Law for Electrical Engineering (EE) helps you for every Electrical Engineering (EE) entrance exam.
This contains 10 Multiple Choice Questions for Electrical Engineering (EE) Test: Biot Savart Law (mcq) to study with solutions a complete question bank.
The solved questions answers in this Test: Biot Savart Law quiz give you a good mix of easy questions and tough questions. Electrical Engineering (EE)
students definitely take this Test: Biot Savart Law exercise for a better result in the exam. You can find other Test: Biot Savart Law extra questions,
long questions & short questions for Electrical Engineering (EE) on EduRev as well by searching above.

QUESTION: 1

Biot Savart law in magnetic field is analogous to which law in electric field?

Solution:

Answer: c

Explanation: Biot Savart law states that the magnetic flux density H = I.dl sinθ/4πr^{2}, which is analogous to the electric field F = q1q2/4πεr^{2}, which is the Coulomb’s law.

QUESTION: 2

Which of the following cannot be computed using the Biot Savart law?

Solution:

Answer: c

Explanation: The Biot Savart law is used to calculate magnetic field intensity. Using which we can calculate flux density and permeability by the formula B = μH.

QUESTION: 3

Find the magnetic field of a finite current element with 2A current and height 1/2π is

Solution:

Answer: a

Explanation: The magnetic field due to a finite current element is given by H = I/2πh. Put I = 2 and h = 1/2π, we get H = 1 unit.

QUESTION: 4

Calculate the magnetic field at a point on the centre of the circular conductor of radius 2m with current 8A.

Solution:

Answer: b

Explanation: The magnetic field due to a point in the centre of the circular conductor is given by H = I/2a. Put I = 8A and a = 2m, we get H = 8/4 = 2 units.

QUESTION: 5

The current element of the solenoid of turns 100, length 2m and current 0.5A is given by,

Solution:

Answer: c

Explanation: The current element of the solenoid is given by NI dx/L. Put N = 100, I = 0.5 and L = 2 to get, I dx = 100 x 0.5 x dx/2 = 25 dx.

QUESTION: 6

Find the magnetic field intensity at the centre O of a square of the sides equal to 5m and carrying 10A of current.

Solution:

Answer: d

Explanation: The magnetic field is given by H = 4I/√2πω. Put I = 10 and ω = 5m. Thus H = 4 x 10/√2π(5) = 1.8 unit.

QUESTION: 7

Find the magnetic flux density when a point from a finite current length element of current 0.5A and radius 100nm.

Solution:

Answer: c

Explanation: The magnetic flux density is B = μH, where H is given by I/2πr. Put μ = 4π x 10^{-7}, I = 0.5 and r = 10^{-7}, we get B = 4π x 10^{-7} x 0.5/2π x 10^{-7} = 1 unit

QUESTION: 8

In a static magnetic field only magnetic dipoles exist. State True/False.

Solution:

Answer: a

Explanation: From Gauss law for magnetic field, we get divergence of the magnetic flux density is always zero (ie, Div(B) = 0). This implies the non-existence of magnetic monopole.

QUESTION: 9

The magnetic field intensity will be zero inside a conductor. State true/false.

Solution:

Answer: b

Explanation: Electric field will be zero inside a conductor and magnetic field will be zero outside the conductor. In other words, the conductor boundary, E will be maximum and H will be minimum.

QUESTION: 10

Find the magnetic field when a circular conductor of very high radius is subjected to a current of 12A and the point P is at the centre of the conductor.

Solution:

Answer: c

Explanation: The magnetic field of a circular conductor with point on the centre is given by I/2a. If the radius is assumed to be infinite, then H = 12/2(∞) = 0.

### Biot Savart Law

Video | 11:42 min

### Magnetic Field and Biot Savart Law

Doc | 2 Pages

### Biot Savart Law: An Introduction, EMFT, Electrical Engineering, GATE

Video | 15:58 min

### Biot Savart Law: An Introduction, EMFT, Electrical Engineering, GATE

Video | 15:58 min

- Test: Biot Savart Law
Test | 10 questions | 10 min

- Test: Biot Savart Law
Test | 10 questions | 10 min

- Test: Faraday Law, EMF And Lenz Law
Test | 10 questions | 10 min

- Test: Ampere Law And Maxwell Law
Test | 20 questions | 10 min

- Test: Gauss Law
Test | 20 questions | 10 min