Civil Engineering (CE) Exam  >  Civil Engineering (CE) Tests  >  GATE Civil Engineering (CE) 2025 Mock Test Series  >  Test: Shear Strength of Soil - 1 - Civil Engineering (CE) MCQ

Test: Shear Strength of Soil - 1 - Civil Engineering (CE) MCQ


Test Description

10 Questions MCQ Test GATE Civil Engineering (CE) 2025 Mock Test Series - Test: Shear Strength of Soil - 1

Test: Shear Strength of Soil - 1 for Civil Engineering (CE) 2025 is part of GATE Civil Engineering (CE) 2025 Mock Test Series preparation. The Test: Shear Strength of Soil - 1 questions and answers have been prepared according to the Civil Engineering (CE) exam syllabus.The Test: Shear Strength of Soil - 1 MCQs are made for Civil Engineering (CE) 2025 Exam. Find important definitions, questions, notes, meanings, examples, exercises, MCQs and online tests for Test: Shear Strength of Soil - 1 below.
Solutions of Test: Shear Strength of Soil - 1 questions in English are available as part of our GATE Civil Engineering (CE) 2025 Mock Test Series for Civil Engineering (CE) & Test: Shear Strength of Soil - 1 solutions in Hindi for GATE Civil Engineering (CE) 2025 Mock Test Series course. Download more important topics, notes, lectures and mock test series for Civil Engineering (CE) Exam by signing up for free. Attempt Test: Shear Strength of Soil - 1 | 10 questions in 30 minutes | Mock test for Civil Engineering (CE) preparation | Free important questions MCQ to study GATE Civil Engineering (CE) 2025 Mock Test Series for Civil Engineering (CE) Exam | Download free PDF with solutions
Test: Shear Strength of Soil - 1 - Question 1

Which one of the following conditions is valid in case of unconfined compression test in comparison to tri-axial test?

Detailed Solution for Test: Shear Strength of Soil - 1 - Question 1

Unconfined compression test is a special case of tri-axial test in which the confining pressure is zero. This test may be conducted on undisturbed or remoulded cohesive soils. It cannot be conducted on coarse-grained soils such as sands and gravels as these cannot stand without lateral support.

Test: Shear Strength of Soil - 1 - Question 2

Which one of the following is the appropriate tri-axial test to assess the immediate stability of an unloading prolfem, such as an excavation of a clay slope?

Detailed Solution for Test: Shear Strength of Soil - 1 - Question 2

For problems of short term-stability of foundations: excavations and earth dams UU (Unconsolidated, Undrained) tests are appropriate. For problems of long-term stability either UU test or CD test is appropriate, depending upon the drainage conditions of soil.

1 Crore+ students have signed up on EduRev. Have you? Download the App
Test: Shear Strength of Soil - 1 - Question 3

In a tri-axial test at failure, major principal stress was 180 kPa, minor principal stress was 100 kPa, and pore pressure was 20 kPa. The sine of the angle of shearing resistance of the sandy soil tested is

Detailed Solution for Test: Shear Strength of Soil - 1 - Question 3

Effective minor principal stress.

Test: Shear Strength of Soil - 1 - Question 4

The relationship between a soil cohesion c and unconfined compressive strength qu is given as

Test: Shear Strength of Soil - 1 - Question 5

In tri-axial compression test, the deviator stress is given by

Test: Shear Strength of Soil - 1 - Question 6

For saturated soil, Skempton’s B-parameter is

Detailed Solution for Test: Shear Strength of Soil - 1 - Question 6

Skempton’s B-parameter is given by,

Cv is volume compressibility of pore fluid under isotropic conditions,
Cs is the coefficient of compressibility of the soil skeleton;n is porosity
In a fully saturated soil, the compressibility of the pore water (Cv) is negligible compared with the compressibility of the soil mass (Cs). Therefore, the ratio (Cv/Cs) tends to zero and the coefficient B becomes equal to unity.
In a partially saturated soil, the compressibility of the air in the voids Is high. The ratio (Cv/Cs) has a value greater than unity, and, therefore, the pore pressure coefficient B has a value of less than unity.

Test: Shear Strength of Soil - 1 - Question 7

In an unconfined compression test on a clay specimen of initial volume V and length L, the area of cross-section at failure is

Detailed Solution for Test: Shear Strength of Soil - 1 - Question 7

As the sample is sheared, its length decreases and the diameter increases. The cross-sectional area A at any stage during shear can be determined assuming that the sample remains cylindrical in shape. Let ΔL0 be the change in length and ΔV0 be the change in volume. The volume of the specimen at any stage is given by V0 ± ΔV0.
Therefore, A(L0 - ΔL0) = V0 ± ΔV0
or

For an undrained test as the volumetric change
(ΔV0) is zero therefore,

Test: Shear Strength of Soil - 1 - Question 8

The stresses responsible for mobilisation of shearing strength of soil is

Detailed Solution for Test: Shear Strength of Soil - 1 - Question 8

The shear strength of a soil is its maximum resistance to shear stress just before the failure. Shear stress develop when soils are subjected to compression.
Terzaghi established that the normal stresses which control the shear strength of a soil are the effective stresses and not the total stresses. In terms of effective stresses shear strength is written as

where c' and ϕ' are the cohesion intercept and the angle of shearing resistance in terms of the effective engineering stress.

Test: Shear Strength of Soil - 1 - Question 9

In a direct shear test, the shear stress and normal stress on a dry sand sample at failure are 0.6 kg/cm2 and 1 kg/cm2 respectively. The angle of internal friction of the sand will be nearly:

Detailed Solution for Test: Shear Strength of Soil - 1 - Question 9

Shear strength of soil (τ) is related with its angie of internal friction (ϕ) by,


c is cohesion; for sand c = 0
is effective normal stress; for dry sand = σ normal stress

Test: Shear Strength of Soil - 1 - Question 10

Which of the following cannot be obtained by using un-drained test? 

Detailed Solution for Test: Shear Strength of Soil - 1 - Question 10

Since only one Mohr circle in terms of effective stresses, is obtained from all un-drained tests, effective stress failure envelope cannot be obtained from this test.

31 docs|280 tests
Information about Test: Shear Strength of Soil - 1 Page
In this test you can find the Exam questions for Test: Shear Strength of Soil - 1 solved & explained in the simplest way possible. Besides giving Questions and answers for Test: Shear Strength of Soil - 1, EduRev gives you an ample number of Online tests for practice

Top Courses for Civil Engineering (CE)

Download as PDF

Top Courses for Civil Engineering (CE)