NEET Exam  >  NEET Tests  >  Topic-wise MCQ Tests for NEET  >  Case Based Questions Test: Semiconductor Electronics - NEET MCQ

Case Based Questions Test: Semiconductor Electronics - NEET MCQ


Test Description

10 Questions MCQ Test Topic-wise MCQ Tests for NEET - Case Based Questions Test: Semiconductor Electronics

Case Based Questions Test: Semiconductor Electronics for NEET 2024 is part of Topic-wise MCQ Tests for NEET preparation. The Case Based Questions Test: Semiconductor Electronics questions and answers have been prepared according to the NEET exam syllabus.The Case Based Questions Test: Semiconductor Electronics MCQs are made for NEET 2024 Exam. Find important definitions, questions, notes, meanings, examples, exercises, MCQs and online tests for Case Based Questions Test: Semiconductor Electronics below.
Solutions of Case Based Questions Test: Semiconductor Electronics questions in English are available as part of our Topic-wise MCQ Tests for NEET for NEET & Case Based Questions Test: Semiconductor Electronics solutions in Hindi for Topic-wise MCQ Tests for NEET course. Download more important topics, notes, lectures and mock test series for NEET Exam by signing up for free. Attempt Case Based Questions Test: Semiconductor Electronics | 10 questions in 20 minutes | Mock test for NEET preparation | Free important questions MCQ to study Topic-wise MCQ Tests for NEET for NEET Exam | Download free PDF with solutions
Case Based Questions Test: Semiconductor Electronics - Question 1

Read the following text and answer the following questions on the basis of the same:

Band theory of solid:

Consider that the Si or Ge crystal contains N atoms. Electrons of each atom will have discrete energies in different orbits. The electron energy will be same if all the atoms are isolated, i.e., separated from each other by a large distance. However, in a crystal, the atoms are close to each other (2 Å to 3 Å) and therefore the electrons interact with each other and also with the neighbouring atomic cores. The overlap (or interaction) will be more felt by the electrons in the outermost orbit while the inner orbit or core electron energies may remain unaffected. Therefore, for understanding electron energies in Si or Ge crystal, we need to consider the changes in the energies of the electrons in the outermost orbit only. For Si, the outermost orbit is the third orbit (n = 3), while for Ge it is the fourth orbit (n = 4). The number of electrons in the outermost orbit is 4 (2s and 2p electrons). Hence, the total number of outer electrons in the crystal is 4N. The maximum possible number of outer electrons in the orbit is 8 (2s + 6p electrons). So, out of the 4N electrons, 2N electrons are in the 2N s-states (orbital quantum number l = 0) and 2N electrons are in the available 6N p-states. Obviously, some p-electron states are empty. This is the case of well separated or isolated atoms.

Q. In a crystal, the distance between two atoms is:

Detailed Solution for Case Based Questions Test: Semiconductor Electronics - Question 1
In a crystal, the atoms are closed to each other (2 Å to 3 Å).
Case Based Questions Test: Semiconductor Electronics - Question 2

Read the following text and answer the following questions on the basis of the same:

Band theory of solid:

Consider that the Si or Ge crystal contains N atoms. Electrons of each atom will have discrete energies in different orbits. The electron energy will be same if all the atoms are isolated, i.e., separated from each other by a large distance. However, in a crystal, the atoms are close to each other (2 Å to 3 Å) and therefore the electrons interact with each other and also with the neighbouring atomic cores. The overlap (or interaction) will be more felt by the electrons in the outermost orbit while the inner orbit or core electron energies may remain unaffected. Therefore, for understanding electron energies in Si or Ge crystal, we need to consider the changes in the energies of the electrons in the outermost orbit only. For Si, the outermost orbit is the third orbit (n = 3), while for Ge it is the fourth orbit (n = 4). The number of electrons in the outermost orbit is 4 (2s and 2p electrons). Hence, the total number of outer electrons in the crystal is 4N. The maximum possible number of outer electrons in the orbit is 8 (2s + 6p electrons). So, out of the 4N electrons, 2N electrons are in the 2N s-states (orbital quantum number l = 0) and 2N electrons are in the available 6N p-states. Obviously, some p-electron states are empty. This is the case of well separated or isolated atoms.

Q. For Silicon and Germanium the outermost orbits are respectively:

Detailed Solution for Case Based Questions Test: Semiconductor Electronics - Question 2
For Si, the outermost orbit is the third orbit (n = 3), while for Ge it is the fourth orbit (n = 4).
1 Crore+ students have signed up on EduRev. Have you? Download the App
Case Based Questions Test: Semiconductor Electronics - Question 3

Read the following text and answer the following questions on the basis of the same:

Band theory of solid:

Consider that the Si or Ge crystal contains N atoms. Electrons of each atom will have discrete energies in different orbits. The electron energy will be same if all the atoms are isolated, i.e., separated from each other by a large distance. However, in a crystal, the atoms are close to each other (2 Å to 3 Å) and therefore the electrons interact with each other and also with the neighbouring atomic cores. The overlap (or interaction) will be more felt by the electrons in the outermost orbit while the inner orbit or core electron energies may remain unaffected. Therefore, for understanding electron energies in Si or Ge crystal, we need to consider the changes in the energies of the electrons in the outermost orbit only. For Si, the outermost orbit is the third orbit (n = 3), while for Ge it is the fourth orbit (n = 4). The number of electrons in the outermost orbit is 4 (2s and 2p electrons). Hence, the total number of outer electrons in the crystal is 4N. The maximum possible number of outer electrons in the orbit is 8 (2s + 6p electrons). So, out of the 4N electrons, 2N electrons are in the 2N s-states (orbital quantum number l = 0) and 2N electrons are in the available 6N p-states. Obviously, some p-electron states are empty. This is the case of well separated or isolated atoms.

Q. The energy of electrons of atoms of a substance will be same if:

Detailed Solution for Case Based Questions Test: Semiconductor Electronics - Question 3
The electron energy will be same if all the atoms are isolated, i.e., separated from each other by a large distance.
Case Based Questions Test: Semiconductor Electronics - Question 4

Read the following text and answer the following questions on the basis of the same:

Band theory of solid:

Consider that the Si or Ge crystal contains N atoms. Electrons of each atom will have discrete energies in different orbits. The electron energy will be same if all the atoms are isolated, i.e., separated from each other by a large distance. However, in a crystal, the atoms are close to each other (2 Å to 3 Å) and therefore the electrons interact with each other and also with the neighbouring atomic cores. The overlap (or interaction) will be more felt by the electrons in the outermost orbit while the inner orbit or core electron energies may remain unaffected. Therefore, for understanding electron energies in Si or Ge crystal, we need to consider the changes in the energies of the electrons in the outermost orbit only. For Si, the outermost orbit is the third orbit (n = 3), while for Ge it is the fourth orbit (n = 4). The number of electrons in the outermost orbit is 4 (2s and 2p electrons). Hence, the total number of outer electrons in the crystal is 4N. The maximum possible number of outer electrons in the orbit is 8 (2s + 6p electrons). So, out of the 4N electrons, 2N electrons are in the 2N s-states (orbital quantum number l = 0) and 2N electrons are in the available 6N p-states. Obviously, some p-electron states are empty. This is the case of well separated or isolated atoms.

Q. The overlap (or interaction) will be more felt by the electrons when they are:

Detailed Solution for Case Based Questions Test: Semiconductor Electronics - Question 4
The overlap (or interaction) will be more felt by the electrons in the outermost orbit, while the inner orbit or core electron energies may remain unaffected.
Case Based Questions Test: Semiconductor Electronics - Question 5

Read the following text and answer the following questions on the basis of the same:

Band theory of solid:

Consider that the Si or Ge crystal contains N atoms. Electrons of each atom will have discrete energies in different orbits. The electron energy will be same if all the atoms are isolated, i.e., separated from each other by a large distance. However, in a crystal, the atoms are close to each other (2 Å to 3 Å) and therefore the electrons interact with each other and also with the neighbouring atomic cores. The overlap (or interaction) will be more felt by the electrons in the outermost orbit while the inner orbit or core electron energies may remain unaffected. Therefore, for understanding electron energies in Si or Ge crystal, we need to consider the changes in the energies of the electrons in the outermost orbit only. For Si, the outermost orbit is the third orbit (n = 3), while for Ge it is the fourth orbit (n = 4). The number of electrons in the outermost orbit is 4 (2s and 2p electrons). Hence, the total number of outer electrons in the crystal is 4N. The maximum possible number of outer electrons in the orbit is 8 (2s + 6p electrons). So, out of the 4N electrons, 2N electrons are in the 2N s-states (orbital quantum number l = 0) and 2N electrons are in the available 6N p-states. Obviously, some p-electron states are empty. This is the case of well separated or isolated atoms.

Q. The maximum possible electrons in an orbit is:

Detailed Solution for Case Based Questions Test: Semiconductor Electronics - Question 5
The maximum possible number of outer electrons in the orbit is 8 (2s + 6p electrons).
Case Based Questions Test: Semiconductor Electronics - Question 6

Read the following text and answer the following questions on the basis of the same:

Light Emitting Diode:

It is a heavily doped p-n junction which under forward bias emits spontaneous radiation. The diode is encapsulated with a transparent cover so that emitted light can come out. When the diode is forward biased, electrons are sent from n → p (where they are minority carriers) and holes are sent from p → n (where they are minority carriers). At the junction boundary, the concentration of minority carriers increases as compared to the equilibrium concentration (i.e., when there is no bias).

Thus at the junction boundary on either side of the junction, excess minority carriers are there which recombine with majority carriers near the junction. On recombination, the energy is released in the form of photons. Photons with energy equal to or slightly less than the band gap are emitted. When the forward current of the diode is small, the intensity of light emitted is small. As the forward current increases, intensity of light increases and reaches a maximum. Further increase in the forward current results in decrease of light intensity. LED's are biased such that the light emitting efficiency is maximum. The V-I characteristics of a LED is similar to that of a Si junction diode. But, the threshold voltages are much higher and slightly different for each colour. The reverse breakdown voltages of LED's are very low, typically around 5 V. So care should be taken that high reverse voltages do not appear across them. LED's that can emit red, yellow, orange, green and blue light are commercially available.

Q. LED emits light:

Detailed Solution for Case Based Questions Test: Semiconductor Electronics - Question 6
LED under forward bias emits spontaneous radiation.
Case Based Questions Test: Semiconductor Electronics - Question 7

Read the following text and answer the following questions on the basis of the same:

Light Emitting Diode:

It is a heavily doped p-n junction which under forward bias emits spontaneous radiation. The diode is encapsulated with a transparent cover so that emitted light can come out. When the diode is forward biased, electrons are sent from n → p (where they are minority carriers) and holes are sent from p → n (where they are minority carriers). At the junction boundary, the concentration of minority carriers increases as compared to the equilibrium concentration (i.e., when there is no bias).

Thus at the junction boundary on either side of the junction, excess minority carriers are there which recombine with majority carriers near the junction. On recombination, the energy is released in the form of photons. Photons with energy equal to or slightly less than the band gap are emitted. When the forward current of the diode is small, the intensity of light emitted is small. As the forward current increases, intensity of light increases and reaches a maximum. Further increase in the forward current results in decrease of light intensity. LED's are biased such that the light emitting efficiency is maximum. The V-I characteristics of a LED is similar to that of a Si junction diode. But, the threshold voltages are much higher and slightly different for each colour. The reverse breakdown voltages of LED's are very low, typically around 5 V. So care should be taken that high reverse voltages do not appear across them. LED's that can emit red, yellow, orange, green and blue light are commercially available.

Q. Threshold voltage of LED is:

Detailed Solution for Case Based Questions Test: Semiconductor Electronics - Question 7
The V-I characteristics of a LED is similar to that of a Si junction diode. But the threshold voltages are much higher and slightly different for each colour.
Case Based Questions Test: Semiconductor Electronics - Question 8

Read the following text and answer the following questions on the basis of the same:

Light Emitting Diode:

It is a heavily doped p-n junction which under forward bias emits spontaneous radiation. The diode is encapsulated with a transparent cover so that emitted light can come out. When the diode is forward biased, electrons are sent from n → p (where they are minority carriers) and holes are sent from p → n (where they are minority carriers). At the junction boundary, the concentration of minority carriers increases as compared to the equilibrium concentration (i.e., when there is no bias).

Thus at the junction boundary on either side of the junction, excess minority carriers are there which recombine with majority carriers near the junction. On recombination, the energy is released in the form of photons. Photons with energy equal to or slightly less than the band gap are emitted. When the forward current of the diode is small, the intensity of light emitted is small. As the forward current increases, intensity of light increases and reaches a maximum. Further increase in the forward current results in decrease of light intensity. LED's are biased such that the light emitting efficiency is maximum. The V-I characteristics of a LED is similar to that of a Si junction diode. But, the threshold voltages are much higher and slightly different for each colour. The reverse breakdown voltages of LED's are very low, typically around 5 V. So care should be taken that high reverse voltages do not appear across them. LED's that can emit red, yellow, orange, green and blue light are commercially available.

Q. LED is a:

Detailed Solution for Case Based Questions Test: Semiconductor Electronics - Question 8
LED is a heavily doped p-n junction diode.
Case Based Questions Test: Semiconductor Electronics - Question 9

Read the following text and answer the following questions on the basis of the same:

Light Emitting Diode:

It is a heavily doped p-n junction which under forward bias emits spontaneous radiation. The diode is encapsulated with a transparent cover so that emitted light can come out. When the diode is forward biased, electrons are sent from n → p (where they are minority carriers) and holes are sent from p → n (where they are minority carriers). At the junction boundary, the concentration of minority carriers increases as compared to the equilibrium concentration (i.e., when there is no bias).

Thus at the junction boundary on either side of the junction, excess minority carriers are there which recombine with majority carriers near the junction. On recombination, the energy is released in the form of photons. Photons with energy equal to or slightly less than the band gap are emitted. When the forward current of the diode is small, the intensity of light emitted is small. As the forward current increases, intensity of light increases and reaches a maximum. Further increase in the forward current results in decrease of light intensity. LED's are biased such that the light emitting efficiency is maximum. The V-I characteristics of a LED is similar to that of a Si junction diode. But, the threshold voltages are much higher and slightly different for each colour. The reverse breakdown voltages of LED's are very low, typically around 5 V. So care should be taken that high reverse voltages do not appear across them. LED's that can emit red, yellow, orange, green and blue light are commercially available.

Q. During recombination at the junction, emitted photons have:

Detailed Solution for Case Based Questions Test: Semiconductor Electronics - Question 9
On recombination, the energy is released in the form of photons. Photons with energy equal to or slightly less than the band gap are emitted.
Case Based Questions Test: Semiconductor Electronics - Question 10

Read the following text and answer the following questions on the basis of the same:

Light Emitting Diode:

It is a heavily doped p-n junction which under forward bias emits spontaneous radiation. The diode is encapsulated with a transparent cover so that emitted light can come out. When the diode is forward biased, electrons are sent from n → p (where they are minority carriers) and holes are sent from p → n (where they are minority carriers). At the junction boundary, the concentration of minority carriers increases as compared to the equilibrium concentration (i.e., when there is no bias).

Thus at the junction boundary on either side of the junction, excess minority carriers are there which recombine with majority carriers near the junction. On recombination, the energy is released in the form of photons. Photons with energy equal to or slightly less than the band gap are emitted. When the forward current of the diode is small, the intensity of light emitted is small. As the forward current increases, intensity of light increases and reaches a maximum. Further increase in the forward current results in decrease of light intensity. LED's are biased such that the light emitting efficiency is maximum. The V-I characteristics of a LED is similar to that of a Si junction diode. But, the threshold voltages are much higher and slightly different for each colour. The reverse breakdown voltages of LED's are very low, typically around 5 V. So care should be taken that high reverse voltages do not appear across them. LED's that can emit red, yellow, orange, green and blue light are commercially available.

Q. The reverse breakdown voltages of LED's are:

Detailed Solution for Case Based Questions Test: Semiconductor Electronics - Question 10
The reverse breakdown voltages of LED's are very low, typically around 5 V.
9 docs|1272 tests
Information about Case Based Questions Test: Semiconductor Electronics Page
In this test you can find the Exam questions for Case Based Questions Test: Semiconductor Electronics solved & explained in the simplest way possible. Besides giving Questions and answers for Case Based Questions Test: Semiconductor Electronics, EduRev gives you an ample number of Online tests for practice

Top Courses for NEET

Download as PDF

Top Courses for NEET