JEE Exam  >  JEE Tests  >  Chapter-wise Tests for JEE Main & Advanced  >  JEE Advanced Level Test: Definite and Indefinite Integral - JEE MCQ

JEE Advanced Level Test: Definite and Indefinite Integral - JEE MCQ


Test Description

30 Questions MCQ Test Chapter-wise Tests for JEE Main & Advanced - JEE Advanced Level Test: Definite and Indefinite Integral

JEE Advanced Level Test: Definite and Indefinite Integral for JEE 2025 is part of Chapter-wise Tests for JEE Main & Advanced preparation. The JEE Advanced Level Test: Definite and Indefinite Integral questions and answers have been prepared according to the JEE exam syllabus.The JEE Advanced Level Test: Definite and Indefinite Integral MCQs are made for JEE 2025 Exam. Find important definitions, questions, notes, meanings, examples, exercises, MCQs and online tests for JEE Advanced Level Test: Definite and Indefinite Integral below.
Solutions of JEE Advanced Level Test: Definite and Indefinite Integral questions in English are available as part of our Chapter-wise Tests for JEE Main & Advanced for JEE & JEE Advanced Level Test: Definite and Indefinite Integral solutions in Hindi for Chapter-wise Tests for JEE Main & Advanced course. Download more important topics, notes, lectures and mock test series for JEE Exam by signing up for free. Attempt JEE Advanced Level Test: Definite and Indefinite Integral | 30 questions in 60 minutes | Mock test for JEE preparation | Free important questions MCQ to study Chapter-wise Tests for JEE Main & Advanced for JEE Exam | Download free PDF with solutions
JEE Advanced Level Test: Definite and Indefinite Integral - Question 1

Let   and  then

Detailed Solution for JEE Advanced Level Test: Definite and Indefinite Integral - Question 1

We have 

JEE Advanced Level Test: Definite and Indefinite Integral - Question 2

 is equal to

Detailed Solution for JEE Advanced Level Test: Definite and Indefinite Integral - Question 2

Putting xn = t so that n xn–1 dx = dt

JEE Advanced Level Test: Definite and Indefinite Integral - Question 3

 is equal to

Detailed Solution for JEE Advanced Level Test: Definite and Indefinite Integral - Question 3

 

JEE Advanced Level Test: Definite and Indefinite Integral - Question 4

Detailed Solution for JEE Advanced Level Test: Definite and Indefinite Integral - Question 4

JEE Advanced Level Test: Definite and Indefinite Integral - Question 5

If  then P =

Detailed Solution for JEE Advanced Level Test: Definite and Indefinite Integral - Question 5

Comparing it with the given value, we get

JEE Advanced Level Test: Definite and Indefinite Integral - Question 6

The value of integral 

Detailed Solution for JEE Advanced Level Test: Definite and Indefinite Integral - Question 6

put t = 1/x ⇒ dt = -1/x2 as t = π/2 and π 

1/π2/π [sin(1/x)] / x² dx

To simplify the integral, we use the substitution method.

Step 1 : Let u = 1/x

du/dx = -1/x²

dx = -1/u² dx

Step 2: Change the Limits of Integration

We need to adjust the limits of integration to match our substitution.

  1. When x = 1/π:

    u = 1 / (1/π) = π

  2. When x = 2/π:

    u = 1 / (2/π) = π/2

Step 3: Substitute and Simplify the Integral

Substitute u and dx into the integral:

1/π2/π [sin(1/x)] / x² dx = ∫ππ/2 sin(u) * (-1/u²) du

Notice the negative sign. To simplify, reverse the limits of integration and remove the negative sign:

= ∫π/2π sin(u) du

Step 4: Integrate

Integrate sin(u) with respect to u:

∫ sin(u) du = -cos(u) + C

Apply the definite integral:

[ -cos(u) ]π/2π = [ -cos(π) ] - [ -cos(π/2) ]

Step 5: Compute the Values

Evaluate the cosine values:

  • cos(π) = -1
  • cos(π/2) = 0

Substitute these values into the expression:

= [ -(-1) ] - [ -0 ] = 1 - 0 = 1

Final Answer

1/π2/π [sin(1/x)] / x² dx = 1

JEE Advanced Level Test: Definite and Indefinite Integral - Question 7

Detailed Solution for JEE Advanced Level Test: Definite and Indefinite Integral - Question 7

Put x = 2 cos θ ⇒ dx = - 2 sin θ dθ, then

JEE Advanced Level Test: Definite and Indefinite Integral - Question 8

If   then

Detailed Solution for JEE Advanced Level Test: Definite and Indefinite Integral - Question 8

Integrate it by parts taking  log (1+ x/2 )as first function

JEE Advanced Level Test: Definite and Indefinite Integral - Question 9

The value of  is

Detailed Solution for JEE Advanced Level Test: Definite and Indefinite Integral - Question 9

Since sinq is positive in interval (0, π)

JEE Advanced Level Test: Definite and Indefinite Integral - Question 10

Detailed Solution for JEE Advanced Level Test: Definite and Indefinite Integral - Question 10

 

JEE Advanced Level Test: Definite and Indefinite Integral - Question 11

Detailed Solution for JEE Advanced Level Test: Definite and Indefinite Integral - Question 11

 

JEE Advanced Level Test: Definite and Indefinite Integral - Question 12

Detailed Solution for JEE Advanced Level Test: Definite and Indefinite Integral - Question 12

 

By adding (i) and (ii), we get

Now, Put tan2x = t, we get

JEE Advanced Level Test: Definite and Indefinite Integral - Question 13

Detailed Solution for JEE Advanced Level Test: Definite and Indefinite Integral - Question 13

JEE Advanced Level Test: Definite and Indefinite Integral - Question 14

denotes the greater integer less than or equal to x

Detailed Solution for JEE Advanced Level Test: Definite and Indefinite Integral - Question 14

JEE Advanced Level Test: Definite and Indefinite Integral - Question 15

If [x] denotes the greater integer less than or equal to x, then the value of 

Detailed Solution for JEE Advanced Level Test: Definite and Indefinite Integral - Question 15

JEE Advanced Level Test: Definite and Indefinite Integral - Question 16

If f(x) = tan x - tan3x + tan5x - …… to ∞ with 0 < x < π/4, then 

Detailed Solution for JEE Advanced Level Test: Definite and Indefinite Integral - Question 16

JEE Advanced Level Test: Definite and Indefinite Integral - Question 17

Detailed Solution for JEE Advanced Level Test: Definite and Indefinite Integral - Question 17

I = ∫0 π2 log(tan x).dx
I = ∫0 π2 log(cot x).dx
Adding both the equations, we get
2I = ∫0 π2 log(tanx) + log(cot x) dx
2I = ∫0 π2 log(1).dx
= 0

JEE Advanced Level Test: Definite and Indefinite Integral - Question 18

Detailed Solution for JEE Advanced Level Test: Definite and Indefinite Integral - Question 18

JEE Advanced Level Test: Definite and Indefinite Integral - Question 19

Detailed Solution for JEE Advanced Level Test: Definite and Indefinite Integral - Question 19

JEE Advanced Level Test: Definite and Indefinite Integral - Question 20

Detailed Solution for JEE Advanced Level Test: Definite and Indefinite Integral - Question 20

f’(x) = -1/x2
Thus, ∫(1 to 2)ex(1/x - 1/x2)dx 
= [ex/x](1 to 2) + c
= e2/2 - e

JEE Advanced Level Test: Definite and Indefinite Integral - Question 21

Detailed Solution for JEE Advanced Level Test: Definite and Indefinite Integral - Question 21

JEE Advanced Level Test: Definite and Indefinite Integral - Question 22

Detailed Solution for JEE Advanced Level Test: Definite and Indefinite Integral - Question 22

Here  on adding we get 

JEE Advanced Level Test: Definite and Indefinite Integral - Question 23

If then

Detailed Solution for JEE Advanced Level Test: Definite and Indefinite Integral - Question 23

JEE Advanced Level Test: Definite and Indefinite Integral - Question 24

 then

Detailed Solution for JEE Advanced Level Test: Definite and Indefinite Integral - Question 24

Differentiating both sides, we get

Comparing the coefficient of like terms on both sides, we get

JEE Advanced Level Test: Definite and Indefinite Integral - Question 25

Detailed Solution for JEE Advanced Level Test: Definite and Indefinite Integral - Question 25

Differentiating both sides, we get

Comparing the like powers of x in both sides, we get

 

JEE Advanced Level Test: Definite and Indefinite Integral - Question 26

If  then

Detailed Solution for JEE Advanced Level Test: Definite and Indefinite Integral - Question 26

JEE Advanced Level Test: Definite and Indefinite Integral - Question 27

 is equal to

Detailed Solution for JEE Advanced Level Test: Definite and Indefinite Integral - Question 27

t = ln(tan x)
dt = (sec2 x)/(tan x) dx
=> (1/cos^2x) * (cosx /sinx) dx = dt
dt = dx/(cosx sinx)
I = ∫t dt
= [t2]/2 + c
= 1/2[ln(tanx)]2 + c

JEE Advanced Level Test: Definite and Indefinite Integral - Question 28

 is equal to

Detailed Solution for JEE Advanced Level Test: Definite and Indefinite Integral - Question 28

JEE Advanced Level Test: Definite and Indefinite Integral - Question 29

 is equal to

Detailed Solution for JEE Advanced Level Test: Definite and Indefinite Integral - Question 29

JEE Advanced Level Test: Definite and Indefinite Integral - Question 30

Detailed Solution for JEE Advanced Level Test: Definite and Indefinite Integral - Question 30

ut sin x = t Þ cos x dx = dt, so that reduced integral is

481 docs|964 tests
Information about JEE Advanced Level Test: Definite and Indefinite Integral Page
In this test you can find the Exam questions for JEE Advanced Level Test: Definite and Indefinite Integral solved & explained in the simplest way possible. Besides giving Questions and answers for JEE Advanced Level Test: Definite and Indefinite Integral, EduRev gives you an ample number of Online tests for practice
Download as PDF