Attempt All sub parts from each question.
Longitudinal and transverse wave: Longitudinal Waves are defined as waves those are capable of displacing the medium in a direction either in the direction of the waves or opposite. Longitudinal mechanical waves are known as compressional waves. This is because these mechanical waves produce a lot of compression and rarefaction while travelling through medium. These waves are also called as pressure waves as there is an increase and decrease in pressure while travelling. Sound Waves like vibrations, P-Waves created through earthquakes, etc., are some kinds of longitudinal waves. A transverse wave is defined as the wave that moves in the perpendicular direction of the vibration. One of the most important examples of transverse waves includes the waves created by the drum's beating. The membrane of the drum moves perpendicular to the surface. Another example of a transverse wave is light. Transverse waves travels through crests and troughs. Transverse waves are mostly present in solids those have profound elasticity. In some cases, when there is a deformation in the material, the wave is called a shear wave.
Q. Which wave is also known as shear wave?
Attempt All sub parts from each question.
Longitudinal and transverse wave: Longitudinal Waves are defined as waves those are capable of displacing the medium in a direction either in the direction of the waves or opposite. Longitudinal mechanical waves are known as compressional waves. This is because these mechanical waves produce a lot of compression and rarefaction while travelling through medium. These waves are also called as pressure waves as there is an increase and decrease in pressure while travelling. Sound Waves like vibrations, P-Waves created through earthquakes, etc., are some kinds of longitudinal waves. A transverse wave is defined as the wave that moves in the perpendicular direction of the vibration. One of the most important examples of transverse waves includes the waves created by the drum's beating. The membrane of the drum moves perpendicular to the surface. Another example of a transverse wave is light. Transverse waves travels through crests and troughs. Transverse waves are mostly present in solids those have profound elasticity. In some cases, when there is a deformation in the material, the wave is called a shear wave.
Q. Which wave is also known as pressure wave?
1 Crore+ students have signed up on EduRev. Have you? Download the App |
Attempt All sub parts from each question.
Longitudinal and transverse wave: Longitudinal Waves are defined as waves those are capable of displacing the medium in a direction either in the direction of the waves or opposite. Longitudinal mechanical waves are known as compressional waves. This is because these mechanical waves produce a lot of compression and rarefaction while travelling through medium. These waves are also called as pressure waves as there is an increase and decrease in pressure while travelling. Sound Waves like vibrations, P-Waves created through earthquakes, etc., are some kinds of longitudinal waves. A transverse wave is defined as the wave that moves in the perpendicular direction of the vibration. One of the most important examples of transverse waves includes the waves created by the drum's beating. The membrane of the drum moves perpendicular to the surface. Another example of a transverse wave is light. Transverse waves travels through crests and troughs. Transverse waves are mostly present in solids those have profound elasticity. In some cases, when there is a deformation in the material, the wave is called a shear wave.
Q. Which wave produces compressions and rarefactions in the medium?
Attempt All sub parts from each question.
Longitudinal and transverse wave: Longitudinal Waves are defined as waves those are capable of displacing the medium in a direction either in the direction of the waves or opposite. Longitudinal mechanical waves are known as compressional waves. This is because these mechanical waves produce a lot of compression and rarefaction while travelling through medium. These waves are also called as pressure waves as there is an increase and decrease in pressure while travelling. Sound Waves like vibrations, P-Waves created through earthquakes, etc., are some kinds of longitudinal waves. A transverse wave is defined as the wave that moves in the perpendicular direction of the vibration. One of the most important examples of transverse waves includes the waves created by the drum's beating. The membrane of the drum moves perpendicular to the surface. Another example of a transverse wave is light. Transverse waves travels through crests and troughs. Transverse waves are mostly present in solids those have profound elasticity. In some cases, when there is a deformation in the material, the wave is called a shear wave.
Q. Beating of drums produces
Attempt All sub parts from each question.
Longitudinal and transverse wave: Longitudinal Waves are defined as waves those are capable of displacing the medium in a direction either in the direction of the waves or opposite. Longitudinal mechanical waves are known as compressional waves. This is because these mechanical waves produce a lot of compression and rarefaction while travelling through medium. These waves are also called as pressure waves as there is an increase and decrease in pressure while travelling. Sound Waves like vibrations, P-Waves created through earthquakes, etc., are some kinds of longitudinal waves. A transverse wave is defined as the wave that moves in the perpendicular direction of the vibration. One of the most important examples of transverse waves includes the waves created by the drum's beating. The membrane of the drum moves perpendicular to the surface. Another example of a transverse wave is light. Transverse waves travels through crests and troughs. Transverse waves are mostly present in solids those have profound elasticity. In some cases, when there is a deformation in the material, the wave is called a shear wave.
Q. Which wave is also known as compressional wave?
Attempt All sub parts from each question.
Tuning a piano wire: When we hear two frequencies which are very close to each other but not exactly equal then distinct waxing and waning of the intensity of the sound is heard. These are known as beats. The beat frequency is equal to the absolute value of the difference in frequency of the two waves. To tune a piano, a musician takes help of beat frequency. He plucks the string and tap a tuning fork at the same time. If the two sound sources— the piano string and the tuning fork, do not produce identical frequency then the musician hears detectable beats. Musician will then adjust the tension of the piano string and repeat the process until the beats are no longer be heard. Tension of the wire changes the frequency of the wire.
As the piano string becomes more in tune with the tuning fork, the beat frequency reduces and approaches 0 Hz. When beats are no longer heard, the piano string is tuned to the tuning fork; i.e. they play the same frequency. The process allows the musician to match the strings' frequencies to the frequencies of a standardized set of tuning forks.
Q. A musician while tuning a piano with a standard tuning fork of frequency 256 Hz, hears beats of 5 Hz. What may be the frequency of the piano?
Attempt All sub parts from each question.
Tuning a piano wire: When we hear two frequencies which are very close to each other but not exactly equal then distinct waxing and waning of the intensity of the sound is heard. These are known as beats. The beat frequency is equal to the absolute value of the difference in frequency of the two waves. To tune a piano, a musician takes help of beat frequency. He plucks the string and tap a tuning fork at the same time. If the two sound sources— the piano string and the tuning fork, do not produce identical frequency then the musician hears detectable beats. Musician will then adjust the tension of the piano string and repeat the process until the beats are no longer be heard. Tension of the wire changes the frequency of the wire.
As the piano string becomes more in tune with the tuning fork, the beat frequency reduces and approaches 0 Hz. When beats are no longer heard, the piano string is tuned to the tuning fork; i.e. they play the same frequency. The process allows the musician to match the strings' frequencies to the frequencies of a standardized set of tuning forks.
Q. A musician while tuning a piano with a standard tuning fork of frequency 256 Hz, initially heard beats of 5 Hz. He then increased the tension and found that the beat frequency has reduced to 2Hz. What he should do to achieve tuning?
Attempt All sub parts from each question.
Tuning a piano wire: When we hear two frequencies which are very close to each other but not exactly equal then distinct waxing and waning of the intensity of the sound is heard. These are known as beats. The beat frequency is equal to the absolute value of the difference in frequency of the two waves. To tune a piano, a musician takes help of beat frequency. He plucks the string and tap a tuning fork at the same time. If the two sound sources— the piano string and the tuning fork, do not produce identical frequency then the musician hears detectable beats. Musician will then adjust the tension of the piano string and repeat the process until the beats are no longer be heard. Tension of the wire changes the frequency of the wire.
As the piano string becomes more in tune with the tuning fork, the beat frequency reduces and approaches 0 Hz. When beats are no longer heard, the piano string is tuned to the tuning fork; i.e. they play the same frequency. The process allows the musician to match the strings' frequencies to the frequencies of a standardized set of tuning forks.
Q. As tension of a wire of fixed length increases, the frequency emitted by it
Attempt All sub parts from each question.
Tuning a piano wire: When we hear two frequencies which are very close to each other but not exactly equal then distinct waxing and waning of the intensity of the sound is heard. These are known as beats. The beat frequency is equal to the absolute value of the difference in frequency of the two waves. To tune a piano, a musician takes help of beat frequency. He plucks the string and tap a tuning fork at the same time. If the two sound sources— the piano string and the tuning fork, do not produce identical frequency then the musician hears detectable beats. Musician will then adjust the tension of the piano string and repeat the process until the beats are no longer be heard. Tension of the wire changes the frequency of the wire.
As the piano string becomes more in tune with the tuning fork, the beat frequency reduces and approaches 0 Hz. When beats are no longer heard, the piano string is tuned to the tuning fork; i.e. they play the same frequency. The process allows the musician to match the strings' frequencies to the frequencies of a standardized set of tuning forks.
Q. A musician while tuning a piano with a standard tuning fork of frequency 256 Hz, initially heard beats of 5 Hz. He then increased the tension and found that the beat disappears. What was the initial frequency of the piano wire?
Attempt All sub parts from each question.
Tuning a piano wire: When we hear two frequencies which are very close to each other but not exactly equal then distinct waxing and waning of the intensity of the sound is heard. These are known as beats. The beat frequency is equal to the absolute value of the difference in frequency of the two waves. To tune a piano, a musician takes help of beat frequency. He plucks the string and tap a tuning fork at the same time. If the two sound sources— the piano string and the tuning fork, do not produce identical frequency then the musician hears detectable beats. Musician will then adjust the tension of the piano string and repeat the process until the beats are no longer be heard. Tension of the wire changes the frequency of the wire.
As the piano string becomes more in tune with the tuning fork, the beat frequency reduces and approaches 0 Hz. When beats are no longer heard, the piano string is tuned to the tuning fork; i.e. they play the same frequency. The process allows the musician to match the strings' frequencies to the frequencies of a standardized set of tuning forks.
Q. A musician while tuning a piano with a standard tuning fork of frequency 256 Hz, hears beats of 5 Hz. What he should do to achieve the tuning?
9 docs|1272 tests
|
9 docs|1272 tests
|