NDA Exam  >  NDA Tests  >  Mathematics for NDA  >  JEE Advanced Level Test: Inverse Trigonometry- 2 - NDA MCQ

JEE Advanced Level Test: Inverse Trigonometry- 2 - NDA MCQ


Test Description

28 Questions MCQ Test Mathematics for NDA - JEE Advanced Level Test: Inverse Trigonometry- 2

JEE Advanced Level Test: Inverse Trigonometry- 2 for NDA 2025 is part of Mathematics for NDA preparation. The JEE Advanced Level Test: Inverse Trigonometry- 2 questions and answers have been prepared according to the NDA exam syllabus.The JEE Advanced Level Test: Inverse Trigonometry- 2 MCQs are made for NDA 2025 Exam. Find important definitions, questions, notes, meanings, examples, exercises, MCQs and online tests for JEE Advanced Level Test: Inverse Trigonometry- 2 below.
Solutions of JEE Advanced Level Test: Inverse Trigonometry- 2 questions in English are available as part of our Mathematics for NDA for NDA & JEE Advanced Level Test: Inverse Trigonometry- 2 solutions in Hindi for Mathematics for NDA course. Download more important topics, notes, lectures and mock test series for NDA Exam by signing up for free. Attempt JEE Advanced Level Test: Inverse Trigonometry- 2 | 28 questions in 56 minutes | Mock test for NDA preparation | Free important questions MCQ to study Mathematics for NDA for NDA Exam | Download free PDF with solutions
JEE Advanced Level Test: Inverse Trigonometry- 2 - Question 1

Domain of f(x) = cos–1 x + cot–1 x + cosec–1 x is

Detailed Solution for JEE Advanced Level Test: Inverse Trigonometry- 2 - Question 1

Domain of cos-1x = [-1 ,1] 
Domain of cot-1x = R
Domain of cosec-1x = R - (-1,1)
So taking intersection of domains of all three we have  only {-1 ,1}
As cos-1x is confined between [-1,1] and cosec-1x is not defined between (-1,1), So only -1 and 1 are left.

JEE Advanced Level Test: Inverse Trigonometry- 2 - Question 2

cosec–1 (cos x) is real if

Detailed Solution for JEE Advanced Level Test: Inverse Trigonometry- 2 - Question 2

a) x ∊ [1 , -1]
So cosx has range of -1 to 1 , and cosec-1x is not defined on R - (-1 ,1)
Hence option a is incorrect
 
b) x ∊ R , but cosx has range of -1 to 1 , and cosec-1x is not defined on R - (-1 ,1)
Hence b is incorrect
 
c) x ∊ odd multiple of pi/2
But cosec-1 x is not defined at 0 
 
d) multiple of pie
cosec-1x is defined at 1 and -1
Hence it is correct .

JEE Advanced Level Test: Inverse Trigonometry- 2 - Question 3

Range of f(x) = sin–1 x + tan–1 x + sec–1 x is

Detailed Solution for JEE Advanced Level Test: Inverse Trigonometry- 2 - Question 3

The function f is defined for x = ±1 
Now, f(1) = sin-1(1) + sec-1(1) + tan-1(1) 
= π/2 + 0 + π/4 = 3π/4 
Also, f(-1) = sin-1(-1) + sec-1(-1) + tan-1(-1) 
= - π/2 + π - 0 - π/4 
= 3π/4
Range = { π/4, 3π/4}

JEE Advanced Level Test: Inverse Trigonometry- 2 - Question 4

If ƒ(x) = tan(x), then f-1(1/√(3)) =

Detailed Solution for JEE Advanced Level Test: Inverse Trigonometry- 2 - Question 4

f(x) = tanx 
Let  y = tanx
⇒x=tan−1 y
⇒f − 1(x)= tan−1 implies (−1)(1/√(3)
=tan−1(1/√(3)
⇒ =tan−1tan π/6 
=π/6 [∵ tanπ/6 = (1/√(3)]

JEE Advanced Level Test: Inverse Trigonometry- 2 - Question 5

If cos [tan-1 {sin(cot-1 )}] = y, then : 

Detailed Solution for JEE Advanced Level Test: Inverse Trigonometry- 2 - Question 5

cos[tan-1(sin(cot-1 (3)½))]
= cos[tan-1(sin(π/6)]
y = cos[tan-1(½)] 
Let tan-1 (½) = θ
tanθ = ½
Applying pythagoras, we get hypotenous = (5)½
Cosθ = 2/(5)½
HENCE, y = 2/(5)½

JEE Advanced Level Test: Inverse Trigonometry- 2 - Question 6

The value of   is 

JEE Advanced Level Test: Inverse Trigonometry- 2 - Question 7

Detailed Solution for JEE Advanced Level Test: Inverse Trigonometry- 2 - Question 7

cos-1 α1 + cos-1 α2 + cos-1 α3 +..........cos-1αn = 0….(1)
As it is given α(i) = 0
From eq(1), α1 = cos0
α1 = 1, α2 = 1…………………… αn = 1
α1 + α2 + α3 +................+ αn
⇒ 1 + 1 + 1 +..................+ n times
⇒ n

JEE Advanced Level Test: Inverse Trigonometry- 2 - Question 8

The value of x for which sin [cot–1(1+x)] = cos(tan–1x)

Detailed Solution for JEE Advanced Level Test: Inverse Trigonometry- 2 - Question 8

cos(-1)(x+1)) = cos(tan-1x)
π/2 - cot(-1)(x+1) = 2nπ +- tan-1 x
Put n = 0 
=> π/2 - cot(-1)(x+1) +- tan-1 x
= +- tan-1 x
=> π/2 =  tan-1 (+-x) + cot(-1)(x+1)
x+1 = +- x
=> 2x +1 = 0
 x = -½

JEE Advanced Level Test: Inverse Trigonometry- 2 - Question 9

If   , then the maximum value of 'n' is 

Detailed Solution for JEE Advanced Level Test: Inverse Trigonometry- 2 - Question 9

cot−1 n/π > π/6
n/π < cot(π/6)[as cot−1x is a decreasing function]
n < π×(3)1/2
​n < π/3
n < 5.16
so max value of n is 5

JEE Advanced Level Test: Inverse Trigonometry- 2 - Question 10

The value of sin–1 (sin 12) + cos–1 (cos 12) is equal to

Detailed Solution for JEE Advanced Level Test: Inverse Trigonometry- 2 - Question 10

sin-1(sin12)+cos-1(cos12)
Here, we have to convert sin12 into a value from -π/2 to π/2
and cos12 into a value from 0 to π.
We can write,
sin-1(sin12)+cos-1(cos12)=sin-1(sin(12-4π))+cos-1(cos(4π-12))
=12-4π+4π-12=0
∴sin-1(sin12)+cos-1(cos12)=0

JEE Advanced Level Test: Inverse Trigonometry- 2 - Question 11

The value of sin-1[cos{cos-1 (cos x) + sin-1(sin x)}], where x   

Detailed Solution for JEE Advanced Level Test: Inverse Trigonometry- 2 - Question 11

x implies(pi/2, pi)
= sin-1(cos(cos-1(cosx) + sin-1(sinx)))
= sin-1(cos(x + π - x)
= sin-1(cos π)
= sin-1(-1)
= -π/2

JEE Advanced Level Test: Inverse Trigonometry- 2 - Question 12

Which of the following is different from 2tan−1x?

Detailed Solution for JEE Advanced Level Test: Inverse Trigonometry- 2 - Question 12

Correct Answer : d

Explanation : Let α = tan-1 x

x = tanα

∴ cos2α = 2cos2α−1

= 2(1/(1+x2)1/2)2 - 1

= 2 - (1 + x2)/(1+x2) = (1-x2)/(1+x2)

=> 2tan-1

=> 2α = cos-1[(1-x2)/(1+x2)]

Let, tan-1 x = θ         

Therefore, tan θ = x

We know that,

tan 2θ = 2tanθ/(1−tan2θ)

tan 2θ = 2x/(1−x2)

 

sin 2θ = 2tanθ/(1+tan2θ)

sin 2θ = 2x/(1+x2)

JEE Advanced Level Test: Inverse Trigonometry- 2 - Question 13

If x< 0 then value of tan-1(x) + tan-1  is equal to 

Detailed Solution for JEE Advanced Level Test: Inverse Trigonometry- 2 - Question 13

 Let y = tan-1 x
x = tan y
⇒ 1/x = 1/tan y
⇒ 1/x = cot y
⇒ 1/x = tan(π/2 - y)
⇒ π/2 - y = tan-1 (1/x)
As we know that y = tan-1 x
π/2 = tan-1(x) + tan-1(1/x)

JEE Advanced Level Test: Inverse Trigonometry- 2 - Question 14

tan–1 a + tan–1b, where a > 0, b > 0, ab > 1, is equal to

Detailed Solution for JEE Advanced Level Test: Inverse Trigonometry- 2 - Question 14

tan-1 a + tan-1 b = tan-1[(a+b)/(1 - ab)]    (ab>1)
tan-1[-(a+b)/(1 - ab)] 
π - tan-1[(a+b)/(1 - ab)]

JEE Advanced Level Test: Inverse Trigonometry- 2 - Question 15

If then

JEE Advanced Level Test: Inverse Trigonometry- 2 - Question 16

The value of  is 

JEE Advanced Level Test: Inverse Trigonometry- 2 - Question 17

The smallest and the largest values of 

Detailed Solution for JEE Advanced Level Test: Inverse Trigonometry- 2 - Question 17

 f(x)=tan−1.(1−x/1+x),0≤x≤1 ltbr gt 
Now (1−x/1+x) = 2(1+x)−1
Given 0 ≤ x ≤ 1,
⇒2(1+x)−1∈[0,1]
⇒tan−1.(1−x/1+x)∈[tan−10,tan−11] 
=> [0,π4]

JEE Advanced Level Test: Inverse Trigonometry- 2 - Question 18

If  , then tan θ is equal to 

Detailed Solution for JEE Advanced Level Test: Inverse Trigonometry- 2 - Question 18

1/2sin−1[3sin2θ/(5+4cos2θ)]=tan−1x
⇒sin−1[3sin2θ/(5+4cos2θ)]=2tan−1x
⇒sin−1[3(2tanθ/(1+tan2θ)/(5+4(1−tan2θ/1+tan2θ))=2tan−1x
⇒sin−1[6tanθ/(5+5tan2θ+4−4tan2θ]=sin1(2x/(1+x2))
⇒sin−1[6tanθ/(9+tan2θ)]=sin1(2x/(1+x2))
⇒sin−1[2(tanθ/3)/1+(tanθ/3)2]=sin1(2x/(1+x2))
⇒x=1/3(tanθ)

JEE Advanced Level Test: Inverse Trigonometry- 2 - Question 19

The principal value of cos–1 (cos 5) is

Detailed Solution for JEE Advanced Level Test: Inverse Trigonometry- 2 - Question 19

cos−1(cos5)
=2π−5 
as 2π−5 ϵ [0,π]

JEE Advanced Level Test: Inverse Trigonometry- 2 - Question 20

The value of sin–1 (sin 12) + cos–1 (cos 12) is equal to

JEE Advanced Level Test: Inverse Trigonometry- 2 - Question 21

Which one of the following correct ?

JEE Advanced Level Test: Inverse Trigonometry- 2 - Question 22

The equation sin-1 x - cos-1 x = has

Detailed Solution for JEE Advanced Level Test: Inverse Trigonometry- 2 - Question 22

sin-1x - cos-1x = π/6
sin-1x - cos-1x = π/2
Adding both the equations, we get
2sin-1x = 2π/3
sin-1x = π/3
x = sinπ/3  = [(3)½]/2
The equation has unique solution.

JEE Advanced Level Test: Inverse Trigonometry- 2 - Question 23

The set of values of ‘x’ for which the formula 2 sin-1 x = sin-1  is true is 

Detailed Solution for JEE Advanced Level Test: Inverse Trigonometry- 2 - Question 23

π22 ≤ sin−1x ≤ π/2 
−π/2 ≤ 2sina ≤ π/2
−π/4 ≤ sina ≤ π4
−1/√2 ≤ a ≤ 1/√2

JEE Advanced Level Test: Inverse Trigonometry- 2 - Question 24

If , then a value of x is

JEE Advanced Level Test: Inverse Trigonometry- 2 - Question 25

The value of x satisfying sin–1 x + sin–1(1 – x) = cos–1 x are

Detailed Solution for JEE Advanced Level Test: Inverse Trigonometry- 2 - Question 25

sin−1 x+sin−1(1−x)=cos−1x
⇒ sin−1x + sin−1
(1−x) = π/2−sin−1x
⇒ sin−1
 (1−x) = π/2−2sin−1x      ...... (i)
Let sin−1 x = y
⇒ x = siny
Therefore, from (i), we get
sin−1(1−x) = π/2 − 2y
⇒1− x = sin(π / 2 − 2y)
⇒ 1 − x = cos2y
⇒ 1 − x = 1 − 2sin2y
⇒ 1−x = 1 − 2x2
⇒ 2x− x = 0
⇒ x(2x − 1) = 0
⇒ x = 0, 1/2

JEE Advanced Level Test: Inverse Trigonometry- 2 - Question 26

The number of solutions of the equation tan-1(1 + x) + tan-1(1 – x) = π/2 is

JEE Advanced Level Test: Inverse Trigonometry- 2 - Question 27

The number of solution(s) of the equation Sin-1(1 – x) – 2sin-1 x = π/2 , is / are

Detailed Solution for JEE Advanced Level Test: Inverse Trigonometry- 2 - Question 27


JEE Advanced Level Test: Inverse Trigonometry- 2 - Question 28

The number of solutions of the equation  is

277 videos|265 docs|221 tests
Information about JEE Advanced Level Test: Inverse Trigonometry- 2 Page
In this test you can find the Exam questions for JEE Advanced Level Test: Inverse Trigonometry- 2 solved & explained in the simplest way possible. Besides giving Questions and answers for JEE Advanced Level Test: Inverse Trigonometry- 2, EduRev gives you an ample number of Online tests for practice
277 videos|265 docs|221 tests
Download as PDF