Class 10 Exam  >  Class 10 Tests  >  Test: Lense Formula - Class 10 MCQ

Test: Lense Formula - Class 10 MCQ


Test Description

10 Questions MCQ Test - Test: Lense Formula

Test: Lense Formula for Class 10 2025 is part of Class 10 preparation. The Test: Lense Formula questions and answers have been prepared according to the Class 10 exam syllabus.The Test: Lense Formula MCQs are made for Class 10 2025 Exam. Find important definitions, questions, notes, meanings, examples, exercises, MCQs and online tests for Test: Lense Formula below.
Solutions of Test: Lense Formula questions in English are available as part of our course for Class 10 & Test: Lense Formula solutions in Hindi for Class 10 course. Download more important topics, notes, lectures and mock test series for Class 10 Exam by signing up for free. Attempt Test: Lense Formula | 10 questions in 10 minutes | Mock test for Class 10 preparation | Free important questions MCQ to study for Class 10 Exam | Download free PDF with solutions
Test: Lense Formula - Question 1

An object is 9 cm from a magnifying lens and its image is formed 36 cm from the lens. Magnification of the lens is

Detailed Solution for Test: Lense Formula - Question 1

- To find the magnification of a lens, use the formula: Magnification (M) = Image distance (V) / Object distance (U).
- In this case, the object distance (U) is -9 cm (the negative sign indicates the object is on the same side as the incoming light). and the image distance (V) is 36 cm.
- Plugging in the values: M = 36 cm / - 9 cm = - 4.
- Negative sign that indicates the image is inverted but the magnitude is 4.

Test: Lense Formula - Question 2

An object 4 cm tall is placed in front of a convex lens. It produces an image 3 cm tall. What is the magnification of the lens ?

Detailed Solution for Test: Lense Formula - Question 2

We know, height of the object is 4 cm h1, height of the image is 3 cm, h2. 
So we have, m = h2/h1 
=> m = 3/4  
=> m = 0.75
Therefore, magnification of the lens is 0.75 

Test: Lense Formula - Question 3

A convergent beam of light passes through a diverging lens of focal length 0.2 m and comes to focus 0.3 m behind the lens. Find the position of the point at which the beam would converge in the absence of lens.​

Detailed Solution for Test: Lense Formula - Question 3

A convergent beam of light passes through a diverging lens with a focal length of 0.2 m and comes to focus 0.3 m behind the lens. We need to find the position where the beam would converge in the absence of the lens.

Given:

  • Focal length of diverging lens, f = -0.2 m (negative because it's a diverging lens)
  • Image distance, v = 0.3 m

Using the Lens Formula:

The lens formula is:

(1 / f) = (1 / v) - (1 / u)

Step-by-Step Solution:

(1 / -0.2) = (1 / 0.3) - (1 / u)

-5 = (10 / 3) - (1 / u)

(1 / u) = (10 / 3) + 5 = (10 + 15) / 3 = 25 / 3

u = 3 / 25 = 0.12 m

  1. Substitute the values into the lens formula:
  2. Simplify the fractions:
  3. Rearrange the equation to isolate (1 / u):
  4. Calculate u:

Answer:

(d) 0.12 m

Test: Lense Formula - Question 4

An object is placed 10 cm from a diverging lens which forms an image 6.5 cm from the lens. What is the focal length of the lens ?

Detailed Solution for Test: Lense Formula - Question 4

Since, it is a diverging lens, that is, a concave lens, we have
u = -10 cm, v = -6.5 cm

Test: Lense Formula - Question 5

A convex lens of focal length 12 cm produces a magnification of -1. The object should be placed at;​

Detailed Solution for Test: Lense Formula - Question 5

1/v - 1/u 
1/f   =-1/u - 1/u
1/f   = - 2/u
 u=-2f
 u=-24 cm

Test: Lense Formula - Question 6

An object is situated at a distance of f/2 from a convex lens of focal length f. Distance of image will be

Detailed Solution for Test: Lense Formula - Question 6

Test: Lense Formula - Question 7

A convex lens forms a real, inverted and same sized image as the object placed at a distance of 40 cm from it. The power of the lens is _____D.

Detailed Solution for Test: Lense Formula - Question 7

Test: Lense Formula - Question 8

A concave lens of 20 cm focal length forms an image 15 cm from the lens. What is the object distance ?

Detailed Solution for Test: Lense Formula - Question 8

Focal length= -20(as it is concave lens)
v= -15 (as concave lens always forms virtual and erect image on left of lens)
Putting these values in lens formula,
1/ -20 - 1/u = 1/ -15
-1/ u= 1/-15 + 1/20
-1/u = -4+3/60
-1/u = -1/60
-u = -60
[u =60]

Test: Lense Formula - Question 9

Where should an object be placed in front of convex lens so as to obtain the image formed on slide projector ?​

Detailed Solution for Test: Lense Formula - Question 9

An object should be placed between F1 and 2 F1 so as to obtain the image formation used in slide projector. This is because, the image has to be enlarged and has to form at a little larger distance from the projector.

Test: Lense Formula - Question 10

The distance at which an object should be placed from a thin convex lens of focal length 10 cm to obtain a virtual image of double of its size is​

Detailed Solution for Test: Lense Formula - Question 10

Given : f = 10 cm , m = 2
v / u = 2
v = 2u 
v = 2u -------(1)
according to lens formula , 
1/v - 1/u = 1/f
1/v - 1/u = 1/10 --------(2)
substitute (1) in (2)
1/2u - 1/u = 1/10
1 - 2 / 2u = 1/10
-1 / 2u = 1/10
-10 = 2u
u = -10/2
u = -5 cm
Therfore object should be placed 5 cm away from the lens.

Information about Test: Lense Formula Page
In this test you can find the Exam questions for Test: Lense Formula solved & explained in the simplest way possible. Besides giving Questions and answers for Test: Lense Formula, EduRev gives you an ample number of Online tests for practice
Download as PDF