Bank Exams Exam  >  Bank Exams Tests  >  Quantitative Aptitude/संख्यात्मक योग्यता  >  परीक्षा: गति, समय और दूरी - 1 - Bank Exams MCQ

परीक्षा: गति, समय और दूरी - 1 - Bank Exams MCQ


Test Description

20 Questions MCQ Test Quantitative Aptitude/संख्यात्मक योग्यता - परीक्षा: गति, समय और दूरी - 1

परीक्षा: गति, समय और दूरी - 1 for Bank Exams 2025 is part of Quantitative Aptitude/संख्यात्मक योग्यता preparation. The परीक्षा: गति, समय और दूरी - 1 questions and answers have been prepared according to the Bank Exams exam syllabus.The परीक्षा: गति, समय और दूरी - 1 MCQs are made for Bank Exams 2025 Exam. Find important definitions, questions, notes, meanings, examples, exercises, MCQs and online tests for परीक्षा: गति, समय और दूरी - 1 below.
Solutions of परीक्षा: गति, समय और दूरी - 1 questions in English are available as part of our Quantitative Aptitude/संख्यात्मक योग्यता for Bank Exams & परीक्षा: गति, समय और दूरी - 1 solutions in Hindi for Quantitative Aptitude/संख्यात्मक योग्यता course. Download more important topics, notes, lectures and mock test series for Bank Exams Exam by signing up for free. Attempt परीक्षा: गति, समय और दूरी - 1 | 20 questions in 20 minutes | Mock test for Bank Exams preparation | Free important questions MCQ to study Quantitative Aptitude/संख्यात्मक योग्यता for Bank Exams Exam | Download free PDF with solutions
परीक्षा: गति, समय और दूरी - 1 - Question 1

एक व्यक्ति 600 मीटर लंबी सड़क को 5 मिनट में पार करता है। उसकी गति किलोमीटर प्रति घंटे में क्या है?

Detailed Solution for परीक्षा: गति, समय और दूरी - 1 - Question 1

व्यक्ति की गति किलोमीटर प्रति घंटे में जानने के लिए, हमें दिए गए दूरी को किलोमीटर में और दिए गए समय को घंटे में परिवर्तित करना होगा।
पहले, दिए गए दूरी को किलोमीटर में परिवर्तित करते हैं। हम जानते हैं कि 1 किलोमीटर = 1000 मीटर।
तो, 600 मीटर को किलोमीटर में बदलने के लिए, हम लिख सकते हैं, 600 मीटर = x किलोमीटर।
x = 600/1000 किलोमीटर = 0.6 किलोमीटर

अब, दिए गए समय को घंटों में परिवर्तित करते हैं। हम जानते हैं कि 1 घंटा = 60 मिनट।
तो, 5 मिनट को घंटों में बदलने के लिए, हम लिख सकते हैं, 5 मिनट = y घंटे।
y = 5/60 घंटे = 0.083 घंटे

अब हम जानते हैं कि गति को निम्नलिखित सूत्र का उपयोग करके पाया जा सकता है,
गति = दूरी/समय
           = 0.6/0.083
           = 6×1000 / 83 × 10
           = 6000/830
           = 7.2 किलोमीटर/घंटा

इसलिए, हमें 5 मिनट में 600 मीटर लंबी सड़क पार करते समय व्यक्ति की गति 7.2 किलोमीटर/घंटा मिलती है।
इसलिए, विकल्प (D) सही उत्तर है।

परीक्षा: गति, समय और दूरी - 1 - Question 2

प्रश्न. एक आदमी एक निश्चित स्थान पर चलने और वापस आने में 5 घंटे 45 मिनट लेता है। यदि वह दोनों तरफ सवारी करता, तो उसे 2 घंटे की बचत होती। वह दोनों तरफ चलने में कितना समय लेगा?

Detailed Solution for परीक्षा: गति, समय और दूरी - 1 - Question 2

मान लें कि दूरी x किमी है। तब,
(x किमी चलने में लगने वाला समय) + (x किमी सवारी करने में लगने वाला समय) = 23/4 घंटे
&रArr; (2x किमी चलने में लगने वाला समय) + (2x किमी सवारी करने में लगने वाला समय) = 23/2 घंटे
लेकिन 2x किमी सवारी करने में लगने वाला समय = 15/4 घंटे है।
इसलिए, 2x किमी चलने में लगने वाला समय = (23/2 - 15/4) घंटे = 31/4 घंटे = 7 घंटे 45 मिनट।

परीक्षा: गति, समय और दूरी - 1 - Question 3

रोकावटों को छोड़कर, एक बस की गति 54 किमी/घंटा है और रोकावटों को शामिल करते हुए, यह 45 किमी/घंटा है। बस एक घंटे में किती मिनट रुकती है?

Detailed Solution for परीक्षा: गति, समय और दूरी - 1 - Question 3

यह दिया गया है कि, रुकावटों को छोड़कर, बस की गति 54 किमी/घंटा है।
⇒ 1 घंटे में बस द्वारा तय की गई दूरी, रुकावटों को छोड़कर = 54 किमी।
इसके अलावा, यह दिया गया है कि रुकावटों को शामिल करते हुए बस की गति 45 किमी/घंटा है।
⇒ 1 घंटे में बस द्वारा तय की गई दूरी, रुकावटों को शामिल करते हुए = 45 किमी।
(1 घंटे में बस द्वारा तय की गई दूरी रुकावटों को छोड़कर - 1 घंटे में बस द्वारा तय की गई दूरी रुकावटों को शामिल करते हुए)
⇒ (54 किमी - 45 किमी) ⇒ 9 किमी
रुकावटों के कारण, यह 1 घंटे में 9 किमी कम तय करती है।
छात्र इस प्रश्न को इस तकनीक का उपयोग करके आसानी से हल कर सकते हैं।
प्रति घंटे रुकावट के लिए आवश्यक समय,

परीक्षा: गति, समय और दूरी - 1 - Question 4

एक व्यक्ति एक यात्रा को 10 घंटे में पूरा करता है। वह यात्रा के पहले आधे हिस्से को 21 किमी/घंटा की गति से और दूसरे आधे हिस्से को 24 किमी/घंटा की गति से यात्रा करता है। कुल यात्रा की दूरी किमी में ज्ञात कीजिए।

Detailed Solution for परीक्षा: गति, समय और दूरी - 1 - Question 4

मान लेते हैं कि पहले आधे हिस्से की यात्रा में समय = x घंटे है।
⇒ दूसरे आधे हिस्से की यात्रा का समय = (10 - x) घंटे है।

∵ दूरी = समय * गति
पहले आधे में कवर की गई दूरी = 21x
दूसरे आधे में कवर की गई दूरी = 24(10 - x)

∵  पहले आधे में कवर की गई दूरी = दूसरे आधे में कवर की गई दूरी
⇒ 21x = 24(10 - x)
⇒ 45x = 240
⇒ x = 16/3

कुल दूरी = 2 * 21(16/3) = 224 किमी [∵ 2 से गुणा किया गया क्योंकि 21x आधे रास्ते की दूरी थी]

परीक्षा: गति, समय और दूरी - 1 - Question 5

एक गाड़ी अपनी वास्तविक गति के 5/7 पर यात्रा करते हुए 42 किमी को 1 घंटा 40 मिनट 48 सेकंड में कवर करती है। गाड़ी की वास्तविक गति क्या है?

Detailed Solution for परीक्षा: गति, समय और दूरी - 1 - Question 5

लिया गया समय = 1 घंटा 40 मिनट 48 सेकंड = 1 घंटा (40 + 4/5) मिनट = 1 + 51/75 घंटे = 126/75 घंटे
मान लें कि वास्तविक गति x किमी/घंटा है
तो, (5/7) * x * (126/75) = 42
⇒ x = 42 * 7 * (75 / 5) * 126
⇒ x = 35 किमी/घंटा

परीक्षा: गति, समय और दूरी - 1 - Question 6

लालू ने 200 मीटर की दूरी पर अपने एक मित्र को देखा। जब लालू उसके पास जाने की कोशिश करता है, तो मित्र भी उसी दिशा में चलने लगता है। यदि उसके मित्र की गति 15 किमी/घंटा है, और लालू की गति 20 किमी/घंटा है, तो लालू अपने मित्र से मिलने से पहले मित्र को कितनी दूरी तय करनी होगी?

Detailed Solution for परीक्षा: गति, समय और दूरी - 1 - Question 6

लालू के लिए दुर्भाग्य की बात यह है कि उसका मित्र उससे दूर जा रहा है।

(क्योंकि मित्र लालू की ही दिशा में चल रहा है)।

सापेक्ष गति = 20 - 15 = 5 किमी/घंटा। दूरी = 200 मीटर।

इस प्रकार, लालू तब अपने मित्र से मिलेगा जब वह उस पर 200 मीटर की बढ़त बनाएगा।

=> आवश्यक समय = दूरी / गति = 0.2 / 5 = 1 / 25 घंटे।

=> मित्र द्वारा 1 / 25 घंटे में तय की गई दूरी (जब लालू उसे पकड़ता है)

=> समय x गति = 1 / 25 x 15 = 3 / 5 किमी = 600 मीटर।

परीक्षा: गति, समय और दूरी - 1 - Question 7

A और B एक वृत्ताकार पथ पर चल रहे हैं। A और B क्रमशः 2 और 3 राउंड प्रति घंटे की गति से चलते हैं। यदि वे सुबह 8 बजे एक ही बिंदु से विपरीत दिशा में चलते हैं, तो वे सुबह 9:30 बजे से पहले कितनी बार आपस में मिलेंगे?

Detailed Solution for परीक्षा: गति, समय और दूरी - 1 - Question 7

सापेक्ष गति = A की गति + B की गति = 2 + 3 = 5 राउंड प्रति घंटे
(क्योंकि वे विपरीत दिशा में चल रहे हैं)

⇒ वे 1 घंटे में 5 बार मिलते हैं और 1/2 घंटे में 2 बार मिलते हैं

∵ सुबह 8 बजे से 9:30 बजे तक का समय = 1.5 घंटे

∴ वे सुबह 9:30 बजे से पहले 7 बार मिलते हैं

परीक्षा: गति, समय और दूरी - 1 - Question 8

दो लड़के एक ही स्थान से एक ही दिशा में क्रमशः 5 किमी/घंटा और 5.5 किमी/घंटा की गति से चलते हैं। वे 8.5 किमी दूर होने में कितना समय लेंगे?

Detailed Solution for परीक्षा: गति, समय और दूरी - 1 - Question 8

इस प्रकार के प्रश्न में, हमें उनके बीच की सापेक्ष गति प्राप्त करने की आवश्यकता होती है।

लड़कों की सापेक्ष गति = 5.5 – 5 = 0.5 किमी/घंटा

उनके बीच की दूरी 8.5 किमी है।
समय = दूरी/गति
समय = 8.5/0.5 = 17 घंटे

परीक्षा: गति, समय और दूरी - 1 - Question 9

30 किमी की दूरी तय करने में, अरुण अनिल से 2 घंटे अधिक लेता है। यदि अरुण अपनी गति को दोगुना करता है, तो वह अनिल से 1 घंटे कम लेगा। अरुण की गति क्या है?

Detailed Solution for परीक्षा: गति, समय और दूरी - 1 - Question 9

मान लें कि अनिल को x घंटे लगते हैं।
⇒ अरुण को x + 2 घंटे लगते हैं।

यदि अरुण अपनी गति को दोगुना करता है, तो उसे x - 1 घंटे लगेंगे।
⇒ उसे 3 घंटे कम चाहिए।
दोगुनी गति का मतलब आधा समय है।
∴ 30 किमी की दूरी तय करने में अरुण द्वारा आवश्यक समय का आधा = 3 घंटे।

⇒ 30 किमी तय करने में अरुण को आवश्यक समय = 6 घंटे।
इसलिए, अरुण की गति = 30/6 = 5 किमी/घंटा।

परीक्षा: गति, समय और दूरी - 1 - Question 10

एक गाड़ी पहले 160 किमी की दूरी 64 किमी/घंटा की गति से और अगली 160 किमी की दूरी 80 किमी/घंटा की गति से चलाती है। यात्रा के पहले 320 किमी के लिए औसत गति क्या होगी?

Detailed Solution for परीक्षा: गति, समय और दूरी - 1 - Question 10

समय लिया गया = दूरी/गति
कुल समय = (160/64) + (160/80) = 9/2 घंटे
औसत गति = दूरी/समय
∴ औसत गति = 320 / (9/2) = 320 x (2/9) = 71.11 किमी/घंटा।

परीक्षा: गति, समय और दूरी - 1 - Question 11

एक जीप एक समान गति से 100 किमी की दूरी तय करती है। यदि जीप की गति 5 किमी/घंटा अधिक होती है, तो वही दूरी तय करने में 1 घंटा कम लगता है। जीप की मूल गति क्या है?

Detailed Solution for परीक्षा: गति, समय और दूरी - 1 - Question 11

जीप की मूल गति 20 किमी/घंटा है।

मान लेते हैं कि जीप की मूल गति x किमी/घंटा है।

मूल गति पर 100 किमी की दूरी तय करने में लगने वाला समय = 100/x घंटे।

बढ़ी हुई गति पर 100 किमी की दूरी तय करने में लगने वाला समय = 100/(x+5) घंटे।

यह दिया गया है कि बढ़ी हुई गति पर 100 किमी की दूरी तय करने में लगने वाला समय मूल गति पर लगने वाले समय से 1 घंटा कम है।

अतः, 100/x - 100/(x+5) = 1

x के लिए हल करने पर, हमें x = 20 मिलता है।

इसलिए, जीप की मूल गति 20 किमी/घंटा है।

परीक्षा: गति, समय और दूरी - 1 - Question 12

दो एथलीट समान दूरी को क्रमशः 10 और 15 किमी/घंटा की गति से तय करते हैं। जब एक एथलीट दूसरे से 15 मिनट अधिक समय लेता है, तो यात्रा की गई दूरी ज्ञात करें।

Detailed Solution for परीक्षा: गति, समय और दूरी - 1 - Question 12

यात्रा की गई दूरी 7.5 किमी है।

मान लीजिए कि 10 किमी/घंटा की गति से यात्रा करने वाले एथलीट द्वारा लिया गया समय t घंटे है।

15 किमी/घंटा की गति से यात्रा करने वाले एथलीट द्वारा लिया गया समय t - 15/60 घंटे है।

दोनों एथलीटों द्वारा यात्रा की गई दूरी समान है।

इसलिए, 10t = 15(t - 15/60)

t का समाधान करने पर हमें t = 3/4 घंटे मिलता है।

दोनों एथलीटों द्वारा यात्रा की गई दूरी 10t = 10 * 3/4 = 7.5 किमी है।

परीक्षा: गति, समय और दूरी - 1 - Question 13

यदि सीता 5 किलोमीटर प्रति घंटे की गति से चलती हैं, तो वह अपनी ट्रेन को 10 मिनट में चूक जाती हैं। यदि वह 7 किलोमीटर प्रति घंटे की गति से चलती हैं, तो वह स्टेशन पर 10 मिनट पहले पहुंच जाती हैं। वह स्टेशन तक कितनी दूरी तय करती हैं?

Detailed Solution for परीक्षा: गति, समय और दूरी - 1 - Question 13

स्टेशन की दूरी इस प्रकार से गणना की जा सकती है:
स्टेशन की दूरी को "d" (किमी में) और दोनों मामलों के बीच का समय अंतर "t" (मिनट में) के रूप में दर्शाते हैं।
पहले मामले में, सीता 5 किमी/घंटा की गति से चलती हैं और ट्रेन को 10 मिनट चूक जाती हैं। इसलिए, समय जो उन्हें ट्रेन पर समय पर पहुँचने में लगेगा वह है: d/5 (घंटों में) + 10/60 (घंटों में) = d/5 + 1/6 (घंटों में)।
दूसरे मामले में, सीता 7 किमी/घंटा की गति से चलती हैं और 10 मिनट पहले पहुँच जाती हैं। इसलिए, ट्रेन तक पहुँचने में उन्हें जो समय लगेगा वह है: d/7 - 10/60 = d/7 - 1/6 (घंटों में)।
चूंकि ये दोनों समय समान होने चाहिए, हम उन्हें समान कर सकते हैं:
d/5 + 1/6 = d/7 - 1/6
इस समीकरण को "d" के लिए हल करने पर मिलता है:
d = 35/6 किमी = 5.8 किमी
इसलिए सही उत्तर 5.8 किमी है।

परीक्षा: गति, समय और दूरी - 1 - Question 14

लालू द्वारा 200 मीटर की दूरी पर एक दोस्त को देखा जाता है। जब लालू उसके पास जाने की कोशिश करता है, तो उसका दोस्त भी लालू की दिशा में चलना शुरू करता है। यदि उसके दोस्त की गति 15 किमी/घंटा है, और लालू की गति 20 किमी/घंटा है, तो लालू के उससे मिलने से पहले उसके दोस्त को कितनी दूर चलना होगा?

Detailed Solution for परीक्षा: गति, समय और दूरी - 1 - Question 14

लालू के लिए दुर्भाग्य की बात है कि उसका दोस्त उससे दूर जा रहा है।

(क्योंकि दोस्त लालू की दिशा में ही चल रहा है)।

सापेक्ष गति = 20 - 15 = 5 किमी/घंटा। दूरी = 200 मीटर।

इस प्रकार, लालू अपने दोस्त से 200 मीटर की बढ़त पाने पर उससे मिलेगा।

=> आवश्यक समय = दूरी / गति = 0.2 / 5 = 1/25 घंटे।

=> जब लालू अपने दोस्त का पीछा करेगा तब दोस्त द्वारा तय की गई दूरी = समय x गति = 1/25 x 15 = 3/5 किमी = 600 मीटर

परीक्षा: गति, समय और दूरी - 1 - Question 15

एक व्यक्ति ने स्टीमर द्वारा 120 किमी, ट्रेन द्वारा 450 किमी और घोड़े द्वारा 60 किमी यात्रा की। इसमें उसे 13 घंटे 30 मिनट लगे। यदि ट्रेन की गति घोड़े की गति का 3 गुना है और स्टीमर की गति का 1.5 गुना है, तो स्टीमर की गति (किमी/घंटा में) क्या है?

Detailed Solution for परीक्षा: गति, समय और दूरी - 1 - Question 15

एक व्यक्ति ने स्टीमर द्वारा 120 किमी, ट्रेन द्वारा 450 किमी और घोड़े द्वारा 60 किमी यात्रा की।

उपयोग की गई सूत्र: समय = दूरी/गति

गणना:
मान लीजिए कि घोड़े की गति x किमी/घंटा है।
ट्रेन की गति = 3x किमी/घंटा।
ट्रेन की गति = 1.5 × स्टीमर की गति  ⇒ 3x = 1.5 × स्टीमर की गति।
स्टीमर की गति = 2x।

प्रश्न के अनुसार: (120/2x) + (450/3x) + (60/x) = [13 + (30/60)] ⇒ (60/x) + (150/x) + (60/x) = (27/2) ⇒ (270/x) = 27/2।
हल करने पर, हमें मिलता है
⇒ x = 20।
 

अब, स्टीमर की गति = 2x = 20 × 2 = 40 किमी/घंटा।
∴ स्टीमर की गति 40 किमी/घंटा है।

परीक्षा: गति, समय और दूरी - 1 - Question 16

एक ट्रेन जो 100 किमी/घंटा की गति से चल रही है, 64 किमी/घंटा की गति से चल रही एक मोटरबाइक को 40 सेकंड में ओवरटेक करती है। ट्रेन की लंबाई मीटर में क्या है?

Detailed Solution for परीक्षा: गति, समय और दूरी - 1 - Question 16

जब एक ट्रेन किसी अन्य वस्तु जैसे मोटरबाइक को ओवरटेक करती है, जिसकी लंबाई ट्रेन की लंबाई की तुलना में नगण्य होती है, तो ओवरटेक करते समय ट्रेन द्वारा तय की गई दूरी ट्रेन की लंबाई के समान होती है।

ट्रेन की लंबाई = ओवरटेक करते समय ट्रेन द्वारा तय की गई दूरी
= ट्रेन और मोटरबाइक के बीच सापेक्ष गति * समय

इस मामले में, चूंकि दोनों वस्तुएं यानी ट्रेन और मोटरबाइक एक ही दिशा में चल रही हैं, उनके बीच सापेक्ष गति = उनके संबंधित गति के बीच का अंतर = 100 - 64 = 36 किमी/घंटा।

ओवरटेक करते समय ट्रेन द्वारा तय की गई दूरी = 36 किमी/घंटा * 40 सेकंड।

अंतिम उत्तर मीटर में दिया गया है और गति किमी/घंटा में और समय सेकंड में है।

तो चलिए, दिए गए गति को किमी/घंटा से मीटर/सेकंड में परिवर्तित करते हैं।

1 किमी/घंटा = 5/18 मीटर/सेकंड

इसलिए, 36 किमी/घंटा = 36 * 5 /18 = 10 मीटर/सेकंड।

सापेक्ष गति = 10 मीटर/सेकंड। समय लिया गया = 40 सेकंड।

इसलिए, तय की गई दूरी = 10 * 40 = 400 मीटर।

परीक्षा: गति, समय और दूरी - 1 - Question 17

दो ट्रेनों, एक 180 मीटर लंबी और दूसरी 270 मीटर लंबी, के एक-दूसरे को पार करने में लगने वाला समय ज्ञात करें, यदि वे क्रमशः 46 किमी/घंटा और 54 किमी/घंटा की गति से चल रही हैं। गति के दोनों संभावित मामलों पर विचार करें।

Detailed Solution for परीक्षा: गति, समय और दूरी - 1 - Question 17

केस I: समान दिशा में गति

=>सापेक्ष गति = 54 — 46 = 8 किमी/घंटा।

कवर्ड की जाने वाली दूरी = 180 + 270 = 450 मीटर।

=>समय = 0.450/8 = 0.056 घंटे = 202.5 सेकंड।
 

केस II: विपरीत दिशा में गति।

=> सापेक्ष गति = 54 + 46=100 किमी/घंटा।

कवर्ड की जाने वाली दूरी = 180 + 270= 450 मीटर।

=>समय = 0.450/100 = 0.00045 घंटे = 16.2 सेकंड।

परीक्षा: गति, समय और दूरी - 1 - Question 18

एक निश्चित समय में एक निश्चित गति से एक दूरी तय की जाती है। यदि इस दूरी का दुगना चार गुना समय में तय किया जाता है, तो दोनों गति का अनुपात क्या होगा?

Detailed Solution for परीक्षा: गति, समय और दूरी - 1 - Question 18

स्थिति I :दूरी D गति S1 समय D/S1

स्थिति II : दूरी 2D गति S2 समय 4(D/S1)

=> स्थिति II के लिए गति = S2 = दूरी/समय = 2D/(4D/S1) = S1/22/(4/1) = 1/2

इसलिए, स्थिति I की गति : स्थिति II की गति = S1:S= 1:1/2 = 2:1 => विकल्प C सही है।

परीक्षा: गति, समय और दूरी - 1 - Question 19

दो व्यक्ति A और B P से Q, जो कि 21 किमी की दूरी है, क्रमशः 3 और 4 किमी प्रति घंटे की गति से चलते हैं। B Q पर पहुँचता है, तुरंत वापस लौटता है और A से R पर मिलता है। P से R की दूरी है

Detailed Solution for परीक्षा: गति, समय और दूरी - 1 - Question 19

जब B A से R पर मिलता है, तब B ने PQ + QR की दूरी तय की है और A ने PR की दूरी।

यानी, दोनों ने मिलकर P से Q तक की दूरी का दो गुना तय किया है, अर्थात 42 किमी।

अब, A और B की गति का अनुपात 3 : 4 है, और उन्होंने 42 किमी की दूरी तय की है।

इसलिए, A द्वारा तय की गई PR की दूरी = 3/7 का 42 किमी = 18 किमी।

परीक्षा: गति, समय और दूरी - 1 - Question 20

एक जहाज नदी के किनारे से 156 किमी दूर है। एक रिसाव, जो मीट्रिक टन पानी को मिनट में प्रवेश देता है, लेकिन पंप 1 घंटे में 15 मीट्रिक टन बाहर निकालते हैं। 68 मीट्रिक टन जहाज को डुबाने के लिए पर्याप्त होगा। औसत चलने की गति ज्ञात करें ताकि वह किनारे पर पहुँच सके जबकि वह डूबने लगे।

Detailed Solution for परीक्षा: गति, समय और दूरी - 1 - Question 20

171 docs|185 tests
Information about परीक्षा: गति, समय और दूरी - 1 Page
In this test you can find the Exam questions for परीक्षा: गति, समय और दूरी - 1 solved & explained in the simplest way possible. Besides giving Questions and answers for परीक्षा: गति, समय और दूरी - 1, EduRev gives you an ample number of Online tests for practice
Download as PDF