CAT Exam  >  CAT Tests  >  CAT Mock Test Series 2024  >  CAT Mock Test- 10 - CAT MCQ

CAT Mock Test- 10 - CAT MCQ


Test Description

66 Questions MCQ Test CAT Mock Test Series 2024 - CAT Mock Test- 10

CAT Mock Test- 10 for CAT 2024 is part of CAT Mock Test Series 2024 preparation. The CAT Mock Test- 10 questions and answers have been prepared according to the CAT exam syllabus.The CAT Mock Test- 10 MCQs are made for CAT 2024 Exam. Find important definitions, questions, notes, meanings, examples, exercises, MCQs and online tests for CAT Mock Test- 10 below.
Solutions of CAT Mock Test- 10 questions in English are available as part of our CAT Mock Test Series 2024 for CAT & CAT Mock Test- 10 solutions in Hindi for CAT Mock Test Series 2024 course. Download more important topics, notes, lectures and mock test series for CAT Exam by signing up for free. Attempt CAT Mock Test- 10 | 66 questions in 120 minutes | Mock test for CAT preparation | Free important questions MCQ to study CAT Mock Test Series 2024 for CAT Exam | Download free PDF with solutions
CAT Mock Test- 10 - Question 1

Read the passage and answer the following questions:
To better understand how the brain underlies selfhood, we need to understand its complex form; its intricate structure at the level of connections between neurons. After all, understanding biological structure has revealed the nature of many diverse life forms. Plants thrive because their typically broad leaves are perfect for transducing light energy into vital chemical energy. Similarly, eyes, whether human or insect, enable the transduction of light from one’s surroundings into electrical signals within the nervous system. These impulses carry information that represents features of the surrounding environment. But when it comes to the relationship between structure and function, brains have remained an enigma. There’s a lot more to them than to other organs that have specific functions, such as eyes, hearts or even hands. These organs can now be surgically replaced. Yet, even if a brain transplant were possible, you couldn’t just switch your brain with another person’s and maintain the same mind. Upon birth, a person’s brain structure is largely prescribed by experience in the womb and their unique genetic code. As we age, experience continues to imprint unique changes on the brain’s neural connectivity, increasing connections in some areas while decreasing them in others, accumulating reroutes upon reroutes as a person ages and learns, gaining knowledge and experience. Additionally, there are alterations in the strength of existing connections. These processes are especially evident in twins, whose brains are strikingly similar when born. However, as they grow, learn and experience the world, their brains diverge, and their essential selves become increasingly unique.
Although there are indeed anatomical regions that appear to serve relatively specific functions, one’s memory is not formed, stored or recalled within the activity of any single brain region. Certain structures, such as the amygdala and the hippocampus, play key roles but trying to find memory in one specific area is simply impossible. It would be like trying to listen to Beethoven’s Fifth but hearing only the strings. Instead, memory, in its broadest sense, lies in the uniqueness of a brain’s entire connective structure, known as the connectome. The connectome consists of its complete network of neurons and all the connections between them, called synapses. It is argued that, fundamentally, ‘you are your connectome’.
Mapping a connectome at the level of single neurons, however, is currently impossible in a living animal. Instead, animal brains must be extracted, perfused with a fixative such as formaldehyde and sliced up as many times as possible before being analysed structurally in order to painstakingly find individual neurons and trace their paths. To achieve this, the properties of each new slice are recorded using various microscopy techniques. Once that’s been done, patterns of electrical flow can be estimated from different neuron types and from connections that excite or inhibit other neurons. What’s crucial is that the extracted brain is preserved accurately enough to maintain its intricate, complex connectome before it’s sliced up.
Currently, it’s unlikely that any human brain has been preserved with its entire connectome perfectly intact as our brains degrade too quickly after death.

Which of the following can be inferred from the passage?

Detailed Solution for CAT Mock Test- 10 - Question 1

"...Yet, even if a brain transplant were possible, you couldn’t just switch your brain with another person’s and maintain the same mind..." From the above lines, it is evident that the idea being conveyed by the author does not match the claim being made in Option A. The statement in A distorts the purpose of the comment made by the author and hence, can be eliminated as the correct answer.
"...Upon birth, a person’s brain structure is largely prescribed by experience in the womb and their unique genetic code..." From the above lines, it is evident that an individual's experience inside his/her mother's womb is not solely responsible for the formulation of his/her brain structure. We can reject Option B since it presents us with an extreme (not implied in the passage).
Option C is out of scope since there is no comparison about the growth of plants based on the broadness of their leaves.
Option D can clearly be inferred from the following lines: "...What’s crucial is that the extracted brain is preserved accurately enough to maintain its intricate, complex connectome before it’s sliced up..."
Hence, Option D is the correct answer.

CAT Mock Test- 10 - Question 2

Read the passage and answer the following questions:
To better understand how the brain underlies selfhood, we need to understand its complex form; its intricate structure at the level of connections between neurons. After all, understanding biological structure has revealed the nature of many diverse life forms. Plants thrive because their typically broad leaves are perfect for transducing light energy into vital chemical energy. Similarly, eyes, whether human or insect, enable the transduction of light from one’s surroundings into electrical signals within the nervous system. These impulses carry information that represents features of the surrounding environment. But when it comes to the relationship between structure and function, brains have remained an enigma. There’s a lot more to them than to other organs that have specific functions, such as eyes, hearts or even hands. These organs can now be surgically replaced. Yet, even if a brain transplant were possible, you couldn’t just switch your brain with another person’s and maintain the same mind. Upon birth, a person’s brain structure is largely prescribed by experience in the womb and their unique genetic code. As we age, experience continues to imprint unique changes on the brain’s neural connectivity, increasing connections in some areas while decreasing them in others, accumulating reroutes upon reroutes as a person ages and learns, gaining knowledge and experience. Additionally, there are alterations in the strength of existing connections. These processes are especially evident in twins, whose brains are strikingly similar when born. However, as they grow, learn and experience the world, their brains diverge, and their essential selves become increasingly unique.
Although there are indeed anatomical regions that appear to serve relatively specific functions, one’s memory is not formed, stored or recalled within the activity of any single brain region. Certain structures, such as the amygdala and the hippocampus, play key roles but trying to find memory in one specific area is simply impossible. It would be like trying to listen to Beethoven’s Fifth but hearing only the strings. Instead, memory, in its broadest sense, lies in the uniqueness of a brain’s entire connective structure, known as the connectome. The connectome consists of its complete network of neurons and all the connections between them, called synapses. It is argued that, fundamentally, ‘you are your connectome’.
Mapping a connectome at the level of single neurons, however, is currently impossible in a living animal. Instead, animal brains must be extracted, perfused with a fixative such as formaldehyde and sliced up as many times as possible before being analysed structurally in order to painstakingly find individual neurons and trace their paths. To achieve this, the properties of each new slice are recorded using various microscopy techniques. Once that’s been done, patterns of electrical flow can be estimated from different neuron types and from connections that excite or inhibit other neurons. What’s crucial is that the extracted brain is preserved accurately enough to maintain its intricate, complex connectome before it’s sliced up.
Currently, it’s unlikely that any human brain has been preserved with its entire connectome perfectly intact as our brains degrade too quickly after death.

The author mentions the example of plants and eyes at the beginning to... 

Detailed Solution for CAT Mock Test- 10 - Question 2

Let us pay heed to the introduction: "To better understand how the brain underlies selfhood, we need to understand its complex form; its intricate structure at the level of connections between neurons. After all, understanding biological structure has revealed the nature of many diverse life forms. Plants thrive because their typically broad leaves are perfect for transducing light energy into vital chemical energy. Similarly, eyes, whether human or insect, enable the transduction of light from one’s surroundings into electrical signals within the nervous system. These impulses carry information that represents features of the surrounding environment. But when it comes to the relationship between structure and function, brains have remained an enigma..."
The author begins with the claim that a better grasp of the underlying structure or the complex form of the brain might aid in understanding its role in selfhood. He furthers his claim by mentioning that this has been the case with many diverse life forms - gaining a deeper awareness of their biological structure enabled a better understanding of their function. The example of plants and the eyes have been mentioned in this regard: to supplement this assertion. However, at the same time, the author hints at how the brain does not completely adhere to this relation (of structure and function), and there are unknown elements present associated with the brain functioning (associated cognitive processes). Option C captures this correctly.
Option A: The author's focus is not on making the readers understand the structure of plants or the eyes; instead, the biological structure is tied up to a corresponding function Option A does not capture the author's intention and hence, can be eliminated. 
Option B: The statement here appears to be far fetched. The author doesn't assert that understanding the biological structure "always" reveals the nature of life forms; he specifies that this is the case in some situations and with certain entities. Thus, we can reject Option B.
Option D: The author clearly states that extending the same idea (as is the case with plants and the eyes) to the brain would be inappropriate due to the inherent complexity). Option D deviates from this idea and is, therefore, incorrect.
Hence, Option C is the correct answer. 

1 Crore+ students have signed up on EduRev. Have you? Download the App
CAT Mock Test- 10 - Question 3

Read the passage and answer the following questions:
To better understand how the brain underlies selfhood, we need to understand its complex form; its intricate structure at the level of connections between neurons. After all, understanding biological structure has revealed the nature of many diverse life forms. Plants thrive because their typically broad leaves are perfect for transducing light energy into vital chemical energy. Similarly, eyes, whether human or insect, enable the transduction of light from one’s surroundings into electrical signals within the nervous system. These impulses carry information that represents features of the surrounding environment. But when it comes to the relationship between structure and function, brains have remained an enigma. There’s a lot more to them than to other organs that have specific functions, such as eyes, hearts or even hands. These organs can now be surgically replaced. Yet, even if a brain transplant were possible, you couldn’t just switch your brain with another person’s and maintain the same mind. Upon birth, a person’s brain structure is largely prescribed by experience in the womb and their unique genetic code. As we age, experience continues to imprint unique changes on the brain’s neural connectivity, increasing connections in some areas while decreasing them in others, accumulating reroutes upon reroutes as a person ages and learns, gaining knowledge and experience. Additionally, there are alterations in the strength of existing connections. These processes are especially evident in twins, whose brains are strikingly similar when born. However, as they grow, learn and experience the world, their brains diverge, and their essential selves become increasingly unique.
Although there are indeed anatomical regions that appear to serve relatively specific functions, one’s memory is not formed, stored or recalled within the activity of any single brain region. Certain structures, such as the amygdala and the hippocampus, play key roles but trying to find memory in one specific area is simply impossible. It would be like trying to listen to Beethoven’s Fifth but hearing only the strings. Instead, memory, in its broadest sense, lies in the uniqueness of a brain’s entire connective structure, known as the connectome. The connectome consists of its complete network of neurons and all the connections between them, called synapses. It is argued that, fundamentally, ‘you are your connectome’.
Mapping a connectome at the level of single neurons, however, is currently impossible in a living animal. Instead, animal brains must be extracted, perfused with a fixative such as formaldehyde and sliced up as many times as possible before being analysed structurally in order to painstakingly find individual neurons and trace their paths. To achieve this, the properties of each new slice are recorded using various microscopy techniques. Once that’s been done, patterns of electrical flow can be estimated from different neuron types and from connections that excite or inhibit other neurons. What’s crucial is that the extracted brain is preserved accurately enough to maintain its intricate, complex connectome before it’s sliced up.
Currently, it’s unlikely that any human brain has been preserved with its entire connectome perfectly intact as our brains degrade too quickly after death.

Why does the author cite the example of Beethoven’s Fifth?

Detailed Solution for CAT Mock Test- 10 - Question 3

Option A is incorrect since the author does not discuss the relative difficulty of understanding Beethoven's Fifth and the working of the brain at the neural level. ("as challenging as")
It is true that the amygdala and the hippocampus play a crucial role in the brain. But the phrase 'equally important' used in B makes the option incorrect because no comparison is made between them on the basis of the magnitude of their importance. Additionally, the statement here misses out on the core point being conveyed.
"...Certain structures, such as the amygdala and the hippocampus, play key roles but trying to find memory in one specific area is simply impossible. It would be like trying to listen to Beethoven’s Fifth but hearing only the strings..."

Option C is incorrect because we are not trying to separate the string part out of the entire symphony when listening, but we are trying to listen to Beethoven’s Fifth just by hearing the strings. So, option C conveys a different meaning.
From the following lines in the passage - "...Certain structures, such as the amygdala and the hippocampus, play key roles but trying to find memory in one specific area is simply impossible. It would be like trying to listen to Beethoven’s Fifth but hearing only the strings..."- we can understand that if we focus on a particular part of the brain, we won't be able to understand the whole. As is said in the passage, it would be like trying to listen to Beethoven’s Fifth by only hearing the strings. Option D captures this aptly.

CAT Mock Test- 10 - Question 4

Read the passage and answer the following questions:
To better understand how the brain underlies selfhood, we need to understand its complex form; its intricate structure at the level of connections between neurons. After all, understanding biological structure has revealed the nature of many diverse life forms. Plants thrive because their typically broad leaves are perfect for transducing light energy into vital chemical energy. Similarly, eyes, whether human or insect, enable the transduction of light from one’s surroundings into electrical signals within the nervous system. These impulses carry information that represents features of the surrounding environment. But when it comes to the relationship between structure and function, brains have remained an enigma. There’s a lot more to them than to other organs that have specific functions, such as eyes, hearts or even hands. These organs can now be surgically replaced. Yet, even if a brain transplant were possible, you couldn’t just switch your brain with another person’s and maintain the same mind. Upon birth, a person’s brain structure is largely prescribed by experience in the womb and their unique genetic code. As we age, experience continues to imprint unique changes on the brain’s neural connectivity, increasing connections in some areas while decreasing them in others, accumulating reroutes upon reroutes as a person ages and learns, gaining knowledge and experience. Additionally, there are alterations in the strength of existing connections. These processes are especially evident in twins, whose brains are strikingly similar when born. However, as they grow, learn and experience the world, their brains diverge, and their essential selves become increasingly unique.
Although there are indeed anatomical regions that appear to serve relatively specific functions, one’s memory is not formed, stored or recalled within the activity of any single brain region. Certain structures, such as the amygdala and the hippocampus, play key roles but trying to find memory in one specific area is simply impossible. It would be like trying to listen to Beethoven’s Fifth but hearing only the strings. Instead, memory, in its broadest sense, lies in the uniqueness of a brain’s entire connective structure, known as the connectome. The connectome consists of its complete network of neurons and all the connections between them, called synapses. It is argued that, fundamentally, ‘you are your connectome’.
Mapping a connectome at the level of single neurons, however, is currently impossible in a living animal. Instead, animal brains must be extracted, perfused with a fixative such as formaldehyde and sliced up as many times as possible before being analysed structurally in order to painstakingly find individual neurons and trace their paths. To achieve this, the properties of each new slice are recorded using various microscopy techniques. Once that’s been done, patterns of electrical flow can be estimated from different neuron types and from connections that excite or inhibit other neurons. What’s crucial is that the extracted brain is preserved accurately enough to maintain its intricate, complex connectome before it’s sliced up.
Currently, it’s unlikely that any human brain has been preserved with its entire connectome perfectly intact as our brains degrade too quickly after death.

Which of the following sentences is/are true as per the passage?

Detailed Solution for CAT Mock Test- 10 - Question 4

"...There’s a lot more to them than to other organs that have specific functions, such as eyes, hearts or even hands. These organs can now be surgically replaced..." Although the author does render us with examples highlighting that this might be the case, there is more to the picture that needs to be considered. The author introduces an additional constraint: "...Yet, even if a brain transplant were possible, you couldn’t just switch your brain with another person’s and maintain the same mind...". Hence, we cannot definitively state that Option A is true (inadequate information). 
We can consider Option B to be true from the following lines- "These processes are especially evident in twins, whose brains are strikingly similar when born. However, as they grow, learn and experience the world, their brains diverge, and their essential selves become increasingly unique."
"...Currently, it’s unlikely that any human brain has been preserved with its entire connectome perfectly intact as our brains degrade too quickly after death..." Although the author makes this assertion, the future of the preservation of the human brain is not a subject that is touched upon. Hence, Option C is out of scope.
"...Mapping a connectome at the level of single neurons, however, is currently impossible in a living animal..." Although this comment is made, we can eliminate Option D  on the same grounds as Option C (out of scope).
Hence, Option B is the correct answer.

CAT Mock Test- 10 - Question 5

Read the passage carefully and answer the following questions:
We must dispense with the idea that democracy is like a torch that gets passed from one leading society to another. The core feature of democracy - that those who rule can do so only with the consent of the people - wasn’t invented in one place at one time: it evolved independently in a great many human societies. Over several millennia and across multiple continents, early democracy was an institution in which rulers governed jointly with councils and assemblies of the people. Classical Greece provided particularly important instances of this democratic practice, and it’s true that the Greeks gave us a language for thinking about democracy, including the word demokratia itself. But they didn’t invent the practice. The core feature of early democracy was that the people had power, even if multiparty elections didn’t happen. The people, or at least some significant fraction of them, exercised this power in many different ways. In some cases, a ruler was chosen by a council or assembly, and was limited to being first among equals. In other instances, a ruler inherited their position, but faced constraints to seek consent from the people before taking actions both large and small.
The first difference between early democracy and our democracies today is that this earlier form of rule was a small-scale phenomenon. In Classical Athens those who had the right to participate in politics tended to do so in a very direct and intensive way, particularly in local assemblies. In modern democracy, participation is very broad, but it’s also not deep; for most of us, it’s limited to voting in elections every few years, and in between these moments others make the decisions. The potential risk of this arrangement, as has been noted by astute observers since the birth of modern republics, is that citizens might grow distrustful of the people who are actually running government on a daily basis and of the special influences to which they might be subject. One way to address the problem of scale is to delegate much more power to states, provinces and localities. But on crucial issues of foreign trade, diplomacy or pressing constitutional questions, it’s impractical for individual states, regions or provinces to set their own policy. If large scale has the potential to lead to distrust and disengagement in a democracy, then a closely related problem is that of polarisation, which can take many forms, such as that involving tensions between different classes of people in the same location, or a difference of opinions between people living in different locations.
The absence of a state bureaucracy was a chief reason why early democracy proved to be such a stable form of rule for so many societies. With little autonomous power - apart from the ability to persuade - those who would have liked to rule as autocrats found themselves without the means to do so. The flipside of this was that, in many early democracies, those who were unhappy with a central decision could simply refuse to participate or even decamp to a new locality. Modern democracy lacks the same protections from central power that early democracies enjoyed. At the same time, having a powerful central state can allow a society to achieve goals such as universal education and prosperity, to name but a few. The question then is how to live with a state while preserving democracy.

Which of the following can be inferred from the passage?

Detailed Solution for CAT Mock Test- 10 - Question 5

Option A: "...If large scale has the potential to lead to distrust and disengagement in a democracy, then a closely related problem is that of polarisation..." It is not implied in the passage that large scale democracy can solve the problem of polarization. Hence, Option A cannot be inferred.
Option B: "...One way to address the problem of scale is to delegate much more power to states, provinces and localities..." The word "majority" in B distorts the point conveyed by the author. It is stated that more powers should be delegated to the state.
Option C: "...At the same time, having a powerful central state can allow a society to achieve goals such as universal education and prosperity, to name but a few..." From the passage, we cannot infer that universal education and prosperity are the most important goals of society. This makes option C incorrect as well.
Option D: "...In modern democracy, participation is very broad, but it’s also not deep; for most of us, it’s limited to voting in elections every few years, and in between these moments others make the decisions. The potential risk of this arrangement (...) is that citizens might grow distrustful of the people who are actually running the government..." From the above-mentioned lines, we can infer that the reason behind citizens growing distrustful of the government would be the lack of depth in their participation. Being restricted to voting every few years and not having a say in government policies is an issue for the general masses.
Hence, Option D can be inferred from the passage.

CAT Mock Test- 10 - Question 6

Read the passage carefully and answer the following questions:
We must dispense with the idea that democracy is like a torch that gets passed from one leading society to another. The core feature of democracy - that those who rule can do so only with the consent of the people - wasn’t invented in one place at one time: it evolved independently in a great many human societies. Over several millennia and across multiple continents, early democracy was an institution in which rulers governed jointly with councils and assemblies of the people. Classical Greece provided particularly important instances of this democratic practice, and it’s true that the Greeks gave us a language for thinking about democracy, including the word demokratia itself. But they didn’t invent the practice. The core feature of early democracy was that the people had power, even if multiparty elections didn’t happen. The people, or at least some significant fraction of them, exercised this power in many different ways. In some cases, a ruler was chosen by a council or assembly, and was limited to being first among equals. In other instances, a ruler inherited their position, but faced constraints to seek consent from the people before taking actions both large and small.
The first difference between early democracy and our democracies today is that this earlier form of rule was a small-scale phenomenon. In Classical Athens those who had the right to participate in politics tended to do so in a very direct and intensive way, particularly in local assemblies. In modern democracy, participation is very broad, but it’s also not deep; for most of us, it’s limited to voting in elections every few years, and in between these moments others make the decisions. The potential risk of this arrangement, as has been noted by astute observers since the birth of modern republics, is that citizens might grow distrustful of the people who are actually running government on a daily basis and of the special influences to which they might be subject. One way to address the problem of scale is to delegate much more power to states, provinces and localities. But on crucial issues of foreign trade, diplomacy or pressing constitutional questions, it’s impractical for individual states, regions or provinces to set their own policy. If large scale has the potential to lead to distrust and disengagement in a democracy, then a closely related problem is that of polarisation, which can take many forms, such as that involving tensions between different classes of people in the same location, or a difference of opinions between people living in different locations.
The absence of a state bureaucracy was a chief reason why early democracy proved to be such a stable form of rule for so many societies. With little autonomous power - apart from the ability to persuade - those who would have liked to rule as autocrats found themselves without the means to do so. The flipside of this was that, in many early democracies, those who were unhappy with a central decision could simply refuse to participate or even decamp to a new locality. Modern democracy lacks the same protections from central power that early democracies enjoyed. At the same time, having a powerful central state can allow a society to achieve goals such as universal education and prosperity, to name but a few. The question then is how to live with a state while preserving democracy.

Why does the author mention the local assemblies of Classical Athens?

Detailed Solution for CAT Mock Test- 10 - Question 6

The author states the following at the beginning of the second paragraph: "...The first difference between early democracy and our democracies today is that this earlier form of rule was a small-scale phenomenon. In Classical Athens, those who had the right to participate in politics tended to do so in a very direct and intensive way, particularly in local assemblies. In modern democracies, participation is very broad, but it’s also not deep; for most of us, it’s limited to voting in elections every few years, and in between these moments others make the decisions...."
From the excerpt above, we can understand that the author is trying to highlight the differences between earlier and modern democracies regarding how much and how many citizens were involved in the running of the government. Option C correctly captures this point.
The author is not trying to prove that earlier democracies were better than the modern ones in any respect. An objective comparison highlighting the difference in scale is being undertaken here. Hence, Option A can be eliminated.
The intention is not to persuade the readers in any manner. Additionally, the author does not emphasize the need for intensive and direct participation in modern democracies (not implied). Hence Option B can be rejected.
It is not conveyed that the direct participation that used to happen in earlier democracies cannot happen in modern ones. Hence, Option D is incorrect.
Option C accurately clarifies the reason behind the author mentioning the local assemblies of Classical Athens.

CAT Mock Test- 10 - Question 7

Read the passage carefully and answer the following questions:
We must dispense with the idea that democracy is like a torch that gets passed from one leading society to another. The core feature of democracy - that those who rule can do so only with the consent of the people - wasn’t invented in one place at one time: it evolved independently in a great many human societies. Over several millennia and across multiple continents, early democracy was an institution in which rulers governed jointly with councils and assemblies of the people. Classical Greece provided particularly important instances of this democratic practice, and it’s true that the Greeks gave us a language for thinking about democracy, including the word demokratia itself. But they didn’t invent the practice. The core feature of early democracy was that the people had power, even if multiparty elections didn’t happen. The people, or at least some significant fraction of them, exercised this power in many different ways. In some cases, a ruler was chosen by a council or assembly, and was limited to being first among equals. In other instances, a ruler inherited their position, but faced constraints to seek consent from the people before taking actions both large and small.
The first difference between early democracy and our democracies today is that this earlier form of rule was a small-scale phenomenon. In Classical Athens those who had the right to participate in politics tended to do so in a very direct and intensive way, particularly in local assemblies. In modern democracy, participation is very broad, but it’s also not deep; for most of us, it’s limited to voting in elections every few years, and in between these moments others make the decisions. The potential risk of this arrangement, as has been noted by astute observers since the birth of modern republics, is that citizens might grow distrustful of the people who are actually running government on a daily basis and of the special influences to which they might be subject. One way to address the problem of scale is to delegate much more power to states, provinces and localities. But on crucial issues of foreign trade, diplomacy or pressing constitutional questions, it’s impractical for individual states, regions or provinces to set their own policy. If large scale has the potential to lead to distrust and disengagement in a democracy, then a closely related problem is that of polarisation, which can take many forms, such as that involving tensions between different classes of people in the same location, or a difference of opinions between people living in different locations.
The absence of a state bureaucracy was a chief reason why early democracy proved to be such a stable form of rule for so many societies. With little autonomous power - apart from the ability to persuade - those who would have liked to rule as autocrats found themselves without the means to do so. The flipside of this was that, in many early democracies, those who were unhappy with a central decision could simply refuse to participate or even decamp to a new locality. Modern democracy lacks the same protections from central power that early democracies enjoyed. At the same time, having a powerful central state can allow a society to achieve goals such as universal education and prosperity, to name but a few. The question then is how to live with a state while preserving democracy.

Which of the following is the author of the passage most likely to agree with?

Detailed Solution for CAT Mock Test- 10 - Question 7

" In modern democracy, participation is very broad, but it’s also not deep; for most of us, it’s limited to voting in elections every few years, and in between these moments others make the decisions. The potential risk of this arrangement, as has been noted by astute observers since the birth of modern republics, is that citizens might grow distrustful of the people who are actually running government on a daily basis..."
From the above lines, it is clear that when people don't participate or engage in decision making, they begin to lose trust in the government. So, if people participate sporadically, as mentioned in option A, there will be little trust between the government and the public. Hence, the author will not agree with sentence A.
On the other hand, option D proposes transparency and openness. The author is pro-public participation as can be seen from the passage. Option D, if implemented, could foster trust and improve participation and thus would be something the author agrees with.
" At the same time, having a powerful central state can allow a society to achieve goals such as universal education and prosp