Test: Newton Rikhman Law


10 Questions MCQ Test Heat Transfer for Engg. | Test: Newton Rikhman Law


Description
This mock test of Test: Newton Rikhman Law for Chemical Engineering helps you for every Chemical Engineering entrance exam. This contains 10 Multiple Choice Questions for Chemical Engineering Test: Newton Rikhman Law (mcq) to study with solutions a complete question bank. The solved questions answers in this Test: Newton Rikhman Law quiz give you a good mix of easy questions and tough questions. Chemical Engineering students definitely take this Test: Newton Rikhman Law exercise for a better result in the exam. You can find other Test: Newton Rikhman Law extra questions, long questions & short questions for Chemical Engineering on EduRev as well by searching above.
QUESTION: 1

Newton-Rikhman law is given by

Solution:

Regardless of the particular nature, the appropriate rate equation for the convective heat transfer is prescribed by Newton’s law of cooling.

QUESTION: 2

The value of film coefficient is dependent upon
(i) Boundary layer configuration
(ii) Geometry and orientation of the surface
(iii) Surface conditions

Solution:

It depends upon surface conditions i.e. roughness and cleanliness, geometry and orientation of the surface i.e. plate, tube and cylinder placed vertically or horizontally.

QUESTION: 3

The convection coefficients for boiling and condensation lie in the range

Solution:

Convection mechanisms involving phase changes lead to important field of boiling and condensatio.

QUESTION: 4

Forced air flows over a convection heat exchanger in a room heater, resulting in a convective heat transfer coefficient 1.136 k W/mK. The surface temperature of heat exchanger may be considered constant at 65 degree Celsius, and the air is at 20 degree Celsius. Determine the heat exchanger surface area required for 8.8 k W of heating

Solution:

Q = h A (t – t f). So. A = 0.172 m2.

QUESTION: 5

A region of fluid motion near a plate in which temperature gradient exist is

Solution:

The fluid velocity decreases as it approaches the solid surface reaching to zero in the fluid layer immediately next to the surface. The thin layer of stagnated fluid is called thermal boundary layer.

QUESTION: 6

Thermo-physical properties of the fluid are represented by
(i) Density
(ii) Viscosity
(iii) Specific heat
(iv) Thermal conductivity
Identify the correct option

Solution:

The value of film coefficient is dependent upon thermos-physical properties of he fluid i.e. density, viscosity, specific heat, coefficient of expansion and thermal conductivity.

QUESTION: 7

A motor cycle cylinder consists of ten fins, each 150 mm outside diameter and 75 mm inside diameter. The average fin temperature is 500 degree Celsius and the surrounding air is at 20 degree Celsius temperature. Make calculations for the rate of heat dissipation from the cylinder fins by convection when motor cycle is stationary and convective coefficient is 6 W/m2K

Solution:

A = 0.265 m2 and Q = (6) (0.265) (500 – 20) = 763.2 W.

QUESTION: 8

Consider the above problem, make calculations for the rate of heat dissipation from the cylinder fins by convection when motor cycle is moving at 60 km/hr and convective coefficient is 75 W/m2 K

Solution:

A = 0.265 m2 and Q = (75) (0.265) (500 – 20) = 9540 W.

QUESTION: 9

The temperature profile at a particular location on a surface is prescribed by the identity
(t s – t) / (t s – t infinity) = (1/2) (y/0.0075) + (3/2) (y/0.0075)
If thermal conductivity of air is stated to be 0.03 W/m K, determine the value of convective heat transfer coefficient

Solution:

h = – k/ (t s – t infinity) [d t/d y] y = 0.

QUESTION: 10

Air at 20 degree Celsius flows over a flat surface maintained at 80 degree Celsius. The local heat flow at a point was measured as 1250 W/m2 .Take thermal conductivity of air as 0.028 W/m K, calculate the temperature at a distance 0.5 mm from the surface

Solution:

Temperature at 0.5 mm from the surface is 80 + (d t/d y) y = 0 (0.0005) = 57.682 degree celsius.

Related tests