Page 1
CBSE XII | Mathematics
Board Paper 2016 – Solution
CBSE Board
Class XII Mathematics
Board Paper – 2016 Solution
SECTION – A
1. Consider the given matrix
T
2
cos sin
A0
2 sin cos
A A 2 I
cos sin cos sin 1 0
2
sin cos sin cos 0 1
2cos 0 2 0
0 2cos
02
2cos 2
21
cos
2
2
4
?? ?? ?
? ? ? ?
??
? ? ?
??
??
? ? ? ? ? ? ? ? ? ? ?
??
? ? ? ? ? ?
? ? ? ? ?
? ? ? ? ? ?
??
? ??
???
??
?
????
??
??
? ? ?
?
??
2. |3 A | = k |A|
|3 A | = 27|A|
k = 27
3. for unique solution |A| ? 0
2 2 1 3 3 1
1
1 1 1
2 1 -1 0
3 2 k
C C C ; C C C
1 0 0
2 -1 -3 0
3 -1 k-3
expansion along R
(k 3) 3 0
k 3 3 0
k0
?
? ? ? ?
?
? ? ? ?
? ? ? ?
?
Page 2
CBSE XII | Mathematics
Board Paper 2016 – Solution
CBSE Board
Class XII Mathematics
Board Paper – 2016 Solution
SECTION – A
1. Consider the given matrix
T
2
cos sin
A0
2 sin cos
A A 2 I
cos sin cos sin 1 0
2
sin cos sin cos 0 1
2cos 0 2 0
0 2cos
02
2cos 2
21
cos
2
2
4
?? ?? ?
? ? ? ?
??
? ? ?
??
??
? ? ? ? ? ? ? ? ? ? ?
??
? ? ? ? ? ?
? ? ? ? ?
? ? ? ? ? ?
??
? ??
???
??
?
????
??
??
? ? ?
?
??
2. |3 A | = k |A|
|3 A | = 27|A|
k = 27
3. for unique solution |A| ? 0
2 2 1 3 3 1
1
1 1 1
2 1 -1 0
3 2 k
C C C ; C C C
1 0 0
2 -1 -3 0
3 -1 k-3
expansion along R
(k 3) 3 0
k 3 3 0
k0
?
? ? ? ?
?
? ? ? ?
? ? ? ?
?
CBSE XII | Mathematics
Board Paper 2016 – Solution
4. r (2i j k) 5 0
? ? ?
? ? ?
?
??
?
??
??
? ? ?
? ? ? ?
? ? ?
in Cartesian form
2x + y - z - 5=0
2x + y - z = 5
2x y z
1
5 5 5
x y z
1
5/2 5 5
5
Intercept cutt of on the axes ,5, 5
2
x y z
1
a b c
5
a b 5 c 5
2
a b c 5/2
5. (i 3j 9k) (3i j k) 0
n
n
i j k
1 3 9 0
3
i(3 9 ) j( 27) k( 9) 0
3 9 0 ...(1)
27 0 ...(2)
9 0 ...(3)
by eq (2) & (3) 27 and 9
, value satisfy the eq (1)
So 27, 9
6. a 4i j k, b 2i 2j k
a b (4i j k) (2i 2j k)
6i 3j 2k
ab
unit vector parallel to (a b)=
ab
6i 3j 2k
36 9 4
6i 3j 2k
49
6 3 2
i j k
7 7 7
Page 3
CBSE XII | Mathematics
Board Paper 2016 – Solution
CBSE Board
Class XII Mathematics
Board Paper – 2016 Solution
SECTION – A
1. Consider the given matrix
T
2
cos sin
A0
2 sin cos
A A 2 I
cos sin cos sin 1 0
2
sin cos sin cos 0 1
2cos 0 2 0
0 2cos
02
2cos 2
21
cos
2
2
4
?? ?? ?
? ? ? ?
??
? ? ?
??
??
? ? ? ? ? ? ? ? ? ? ?
??
? ? ? ? ? ?
? ? ? ? ?
? ? ? ? ? ?
??
? ??
???
??
?
????
??
??
? ? ?
?
??
2. |3 A | = k |A|
|3 A | = 27|A|
k = 27
3. for unique solution |A| ? 0
2 2 1 3 3 1
1
1 1 1
2 1 -1 0
3 2 k
C C C ; C C C
1 0 0
2 -1 -3 0
3 -1 k-3
expansion along R
(k 3) 3 0
k 3 3 0
k0
?
? ? ? ?
?
? ? ? ?
? ? ? ?
?
CBSE XII | Mathematics
Board Paper 2016 – Solution
4. r (2i j k) 5 0
? ? ?
? ? ?
?
??
?
??
??
? ? ?
? ? ? ?
? ? ?
in Cartesian form
2x + y - z - 5=0
2x + y - z = 5
2x y z
1
5 5 5
x y z
1
5/2 5 5
5
Intercept cutt of on the axes ,5, 5
2
x y z
1
a b c
5
a b 5 c 5
2
a b c 5/2
5. (i 3j 9k) (3i j k) 0
n
n
i j k
1 3 9 0
3
i(3 9 ) j( 27) k( 9) 0
3 9 0 ...(1)
27 0 ...(2)
9 0 ...(3)
by eq (2) & (3) 27 and 9
, value satisfy the eq (1)
So 27, 9
6. a 4i j k, b 2i 2j k
a b (4i j k) (2i 2j k)
6i 3j 2k
ab
unit vector parallel to (a b)=
ab
6i 3j 2k
36 9 4
6i 3j 2k
49
6 3 2
i j k
7 7 7
CBSE XII | Mathematics
Board Paper 2016 – Solution
SECTION – B
7.
? ? ? ?
? ? ? ?
? ? ? ? ?
1 1 1 1
Given that tan x 1 tan x tan x 1 tan 3x
? ? ? ?
? ? ? ?
? ? ? ?
? ?
? ? ? ?
??
??
? ? ?
?
?
? ? ? ? ? ?
? ??
??
??
?
??
? ??
??
??
?
??
??
? ? ?
? ? ? ?
??
??
? ? ?
??
??
??
?
??
??
??
?
1 1 1 1
-1 1 1
-1 1 1
1 1 1
1
2
tan x 1 tan x 1 tan 3x tan x...(1)
AB
We know that, tan A tan B tan
1 AB
AB
and tan A tan B tan
1 AB
x 1 x 1
Thus, tan x 1 tan x 1 tan
1 x 1 x 1
2x
tan
1 x 1
tan
??
??
?
??
1
2
2x
....(2)
2x
? ?
1 1 1
1
2
11
22
22
22
22
2
2
3x x
Similarly,tan 3x tan x tan
1 3x x
2x
tan ....(3)
1 3x
From equations (1), (2) and (3), we have,
2x 2x
tan tan
2 x 1 3x
2x 2x
2 x 1 3x
11
2 x 1 3x
2 x 1 3x
4x 1
1
x
? ? ?
?
??
??
?
?? ??
??
?
??
??
?
??
?
??
? ? ? ?
?
? ? ? ?
??
? ? ? ?
??
??
??
??
? ? ? ?
??
??
4
1
x
2
? ? ?
Page 4
CBSE XII | Mathematics
Board Paper 2016 – Solution
CBSE Board
Class XII Mathematics
Board Paper – 2016 Solution
SECTION – A
1. Consider the given matrix
T
2
cos sin
A0
2 sin cos
A A 2 I
cos sin cos sin 1 0
2
sin cos sin cos 0 1
2cos 0 2 0
0 2cos
02
2cos 2
21
cos
2
2
4
?? ?? ?
? ? ? ?
??
? ? ?
??
??
? ? ? ? ? ? ? ? ? ? ?
??
? ? ? ? ? ?
? ? ? ? ?
? ? ? ? ? ?
??
? ??
???
??
?
????
??
??
? ? ?
?
??
2. |3 A | = k |A|
|3 A | = 27|A|
k = 27
3. for unique solution |A| ? 0
2 2 1 3 3 1
1
1 1 1
2 1 -1 0
3 2 k
C C C ; C C C
1 0 0
2 -1 -3 0
3 -1 k-3
expansion along R
(k 3) 3 0
k 3 3 0
k0
?
? ? ? ?
?
? ? ? ?
? ? ? ?
?
CBSE XII | Mathematics
Board Paper 2016 – Solution
4. r (2i j k) 5 0
? ? ?
? ? ?
?
??
?
??
??
? ? ?
? ? ? ?
? ? ?
in Cartesian form
2x + y - z - 5=0
2x + y - z = 5
2x y z
1
5 5 5
x y z
1
5/2 5 5
5
Intercept cutt of on the axes ,5, 5
2
x y z
1
a b c
5
a b 5 c 5
2
a b c 5/2
5. (i 3j 9k) (3i j k) 0
n
n
i j k
1 3 9 0
3
i(3 9 ) j( 27) k( 9) 0
3 9 0 ...(1)
27 0 ...(2)
9 0 ...(3)
by eq (2) & (3) 27 and 9
, value satisfy the eq (1)
So 27, 9
6. a 4i j k, b 2i 2j k
a b (4i j k) (2i 2j k)
6i 3j 2k
ab
unit vector parallel to (a b)=
ab
6i 3j 2k
36 9 4
6i 3j 2k
49
6 3 2
i j k
7 7 7
CBSE XII | Mathematics
Board Paper 2016 – Solution
SECTION – B
7.
? ? ? ?
? ? ? ?
? ? ? ? ?
1 1 1 1
Given that tan x 1 tan x tan x 1 tan 3x
? ? ? ?
? ? ? ?
? ? ? ?
? ?
? ? ? ?
??
??
? ? ?
?
?
? ? ? ? ? ?
? ??
??
??
?
??
? ??
??
??
?
??
??
? ? ?
? ? ? ?
??
??
? ? ?
??
??
??
?
??
??
??
?
1 1 1 1
-1 1 1
-1 1 1
1 1 1
1
2
tan x 1 tan x 1 tan 3x tan x...(1)
AB
We know that, tan A tan B tan
1 AB
AB
and tan A tan B tan
1 AB
x 1 x 1
Thus, tan x 1 tan x 1 tan
1 x 1 x 1
2x
tan
1 x 1
tan
??
??
?
??
1
2
2x
....(2)
2x
? ?
1 1 1
1
2
11
22
22
22
22
2
2
3x x
Similarly,tan 3x tan x tan
1 3x x
2x
tan ....(3)
1 3x
From equations (1), (2) and (3), we have,
2x 2x
tan tan
2 x 1 3x
2x 2x
2 x 1 3x
11
2 x 1 3x
2 x 1 3x
4x 1
1
x
? ? ?
?
??
??
?
?? ??
??
?
??
??
?
??
?
??
? ? ? ?
?
? ? ? ?
??
? ? ? ?
??
??
??
??
? ? ? ?
??
??
4
1
x
2
? ? ?
CBSE XII | Mathematics
Board Paper 2016 – Solution
OR
? ? ? ?
?
??
?? ? ??
?
??
??
??
??
??
? ??
??
??
?
??
??
?
??
?
? ??
?
?
?? ? ??
? ?
????
?
??
??
?? ??
3
-1 1
22
-1 1 1
3
22
-1
3
22
Consider the left hand side
6x 8x 4x
L.H.S=tan tan
1 12x 1 4x
We know that,
AB
tan A tan B tan
1 AB
6x 8x 4x
1 12x 1 4x
Thus, L.H.S tan
6x 8x 4x
1
1 12x 1 4x
? ? ? ? ? ?
? ? ? ?
? ?
? ? ? ?
? ? ? ? ? ?
? ? ? ?
? ? ? ? ? ?
? ? ? ?
? ? ? ? ? ?
? ? ? ?
?
?
?
?
??
? ? ? ?
??
?? ??
???
?
??
?
??
??
??
??
??
? ? ? ?
??
?? ??
???
? ? ? ?
??
??
??
??
??
? ? ? ?
?
? ? ?
3 2 2
22
-1
3
22
3 2 2
22
-1
2 2 3
22
3 2 2
-1
22
6x 8x 1 4x 4x 1 12x
1 12x 1 4x
tan
4x 6x 8x
1
1 12x 1 4x
6x 8x 1 4x 4x 1 12x
1 12x 1 4x
tan
1 12x 1 4x 4x 6x 8x
1 12x 1 4x
6x 8x 1 4x 4x 1 12x
tan
1 12x 1 4x
? ?
??
??
??
?
??
?? ? ? ? ? ?
?
??
? ? ? ? ?
??
?? ??
?
??
??
??
3
3 3 5 3
-1
2 2 4 2 4
53
-1
42
4x 6x 8x
6x 24x 8x 32x 4x 48x
tan
1 4x 12x 48x 24x 32x
32x 16x 2x
tan
16x 8x 1
? ?
??
??
??
?
?? ??
??
?
42
-1
42
-1
2x 16x 8x 1
tan
16x 8x 1
tan 2x
Thus, L.H.S=R.H.S
Page 5
CBSE XII | Mathematics
Board Paper 2016 – Solution
CBSE Board
Class XII Mathematics
Board Paper – 2016 Solution
SECTION – A
1. Consider the given matrix
T
2
cos sin
A0
2 sin cos
A A 2 I
cos sin cos sin 1 0
2
sin cos sin cos 0 1
2cos 0 2 0
0 2cos
02
2cos 2
21
cos
2
2
4
?? ?? ?
? ? ? ?
??
? ? ?
??
??
? ? ? ? ? ? ? ? ? ? ?
??
? ? ? ? ? ?
? ? ? ? ?
? ? ? ? ? ?
??
? ??
???
??
?
????
??
??
? ? ?
?
??
2. |3 A | = k |A|
|3 A | = 27|A|
k = 27
3. for unique solution |A| ? 0
2 2 1 3 3 1
1
1 1 1
2 1 -1 0
3 2 k
C C C ; C C C
1 0 0
2 -1 -3 0
3 -1 k-3
expansion along R
(k 3) 3 0
k 3 3 0
k0
?
? ? ? ?
?
? ? ? ?
? ? ? ?
?
CBSE XII | Mathematics
Board Paper 2016 – Solution
4. r (2i j k) 5 0
? ? ?
? ? ?
?
??
?
??
??
? ? ?
? ? ? ?
? ? ?
in Cartesian form
2x + y - z - 5=0
2x + y - z = 5
2x y z
1
5 5 5
x y z
1
5/2 5 5
5
Intercept cutt of on the axes ,5, 5
2
x y z
1
a b c
5
a b 5 c 5
2
a b c 5/2
5. (i 3j 9k) (3i j k) 0
n
n
i j k
1 3 9 0
3
i(3 9 ) j( 27) k( 9) 0
3 9 0 ...(1)
27 0 ...(2)
9 0 ...(3)
by eq (2) & (3) 27 and 9
, value satisfy the eq (1)
So 27, 9
6. a 4i j k, b 2i 2j k
a b (4i j k) (2i 2j k)
6i 3j 2k
ab
unit vector parallel to (a b)=
ab
6i 3j 2k
36 9 4
6i 3j 2k
49
6 3 2
i j k
7 7 7
CBSE XII | Mathematics
Board Paper 2016 – Solution
SECTION – B
7.
? ? ? ?
? ? ? ?
? ? ? ? ?
1 1 1 1
Given that tan x 1 tan x tan x 1 tan 3x
? ? ? ?
? ? ? ?
? ? ? ?
? ?
? ? ? ?
??
??
? ? ?
?
?
? ? ? ? ? ?
? ??
??
??
?
??
? ??
??
??
?
??
??
? ? ?
? ? ? ?
??
??
? ? ?
??
??
??
?
??
??
??
?
1 1 1 1
-1 1 1
-1 1 1
1 1 1
1
2
tan x 1 tan x 1 tan 3x tan x...(1)
AB
We know that, tan A tan B tan
1 AB
AB
and tan A tan B tan
1 AB
x 1 x 1
Thus, tan x 1 tan x 1 tan
1 x 1 x 1
2x
tan
1 x 1
tan
??
??
?
??
1
2
2x
....(2)
2x
? ?
1 1 1
1
2
11
22
22
22
22
2
2
3x x
Similarly,tan 3x tan x tan
1 3x x
2x
tan ....(3)
1 3x
From equations (1), (2) and (3), we have,
2x 2x
tan tan
2 x 1 3x
2x 2x
2 x 1 3x
11
2 x 1 3x
2 x 1 3x
4x 1
1
x
? ? ?
?
??
??
?
?? ??
??
?
??
??
?
??
?
??
? ? ? ?
?
? ? ? ?
??
? ? ? ?
??
??
??
??
? ? ? ?
??
??
4
1
x
2
? ? ?
CBSE XII | Mathematics
Board Paper 2016 – Solution
OR
? ? ? ?
?
??
?? ? ??
?
??
??
??
??
??
? ??
??
??
?
??
??
?
??
?
? ??
?
?
?? ? ??
? ?
????
?
??
??
?? ??
3
-1 1
22
-1 1 1
3
22
-1
3
22
Consider the left hand side
6x 8x 4x
L.H.S=tan tan
1 12x 1 4x
We know that,
AB
tan A tan B tan
1 AB
6x 8x 4x
1 12x 1 4x
Thus, L.H.S tan
6x 8x 4x
1
1 12x 1 4x
? ? ? ? ? ?
? ? ? ?
? ?
? ? ? ?
? ? ? ? ? ?
? ? ? ?
? ? ? ? ? ?
? ? ? ?
? ? ? ? ? ?
? ? ? ?
?
?
?
?
??
? ? ? ?
??
?? ??
???
?
??
?
??
??
??
??
??
? ? ? ?
??
?? ??
???
? ? ? ?
??
??
??
??
??
? ? ? ?
?
? ? ?
3 2 2
22
-1
3
22
3 2 2
22
-1
2 2 3
22
3 2 2
-1
22
6x 8x 1 4x 4x 1 12x
1 12x 1 4x
tan
4x 6x 8x
1
1 12x 1 4x
6x 8x 1 4x 4x 1 12x
1 12x 1 4x
tan
1 12x 1 4x 4x 6x 8x
1 12x 1 4x
6x 8x 1 4x 4x 1 12x
tan
1 12x 1 4x
? ?
??
??
??
?
??
?? ? ? ? ? ?
?
??
? ? ? ? ?
??
?? ??
?
??
??
??
3
3 3 5 3
-1
2 2 4 2 4
53
-1
42
4x 6x 8x
6x 24x 8x 32x 4x 48x
tan
1 4x 12x 48x 24x 32x
32x 16x 2x
tan
16x 8x 1
? ?
??
??
??
?
?? ??
??
?
42
-1
42
-1
2x 16x 8x 1
tan
16x 8x 1
tan 2x
Thus, L.H.S=R.H.S
CBSE XII | Mathematics
Board Paper 2016 – Solution
8. Let charges for typing one English page be Rs. x.
Letcharges for typing one Hindi page be Rs.y.
Thus from the given statements, we have,
10x+3y=145
3x+10y=180
Thus the above system can be written as,
10 3 x 145
3 10 y 180
10 3
AX B, where, A=
3 10
? ? ? ? ? ?
?
? ? ? ? ? ?
? ? ? ? ? ?
??
-1
-1 -1
-1
-1
-1
x 145
,X and B=
y 180
Multiply A on both the sides, we have,
A AX A B
IX A B
X A B
Thus, we need to find the inverse of the matrix A.
a b d b 1
We know that, if P= then P
c d ad bc
? ? ? ? ? ?
?
? ? ? ? ? ?
? ? ? ? ? ?
??
??
??
? ??
?
??
?
??
-1
ca
10 3 1
Thus, A
10 10 3 3 3 10
10 3 1
100 9 3 10
10 3 1
91 3 10
10 3 145 1
Therefore,X
91 3 10 180
10 145 3 180 1
91 3 145 10 180
910 1
91 1365
10
15
x 10
y 15
??
??
?
??
? ??
?
??
? ? ? ?
??
? ??
?
??
??
??
? ??
?
??
?
??
? ? ? ? ?
?
? ? ? ?
?
? ? ? ?
? ? ? ??
?
??
? ? ? ?
??
??
?
??
??
??
?
??
??
??
??
??
??
x 10 and y=15
??
??
??
??
Amount taken from Shyam = 2 × 5 = Rs.10
Actual rate = 15 × 5 =75
Difference amount = Rs.75 – Rs.10 = Rs.65
Rs. 65 less was charged from the poor boy Shyam.
Humanity and sympathy are reflected in this problem.
Read More