Page 1
Free coaching of B.Sc (h) maths & JAM
For more 8130648819
ADVANCE ENGINEERING MATHEMATICS
BOOK ERN N KTREYSZ G
Exercise (10.2) only (5 16)
Que. 5 f(x) = x , ?? < x < ??
We know that, the fourier series is
f(x) a
? .a
cos
b
sin
/
where a
? f(x)dx
a
? f(x) cosnx dx
b n=
? f(x)sinnxdx
now, a 0 =
? f(x)dx
=
? xdx
= 0 (? f(x) x is odd fun
n
)
a
? f(x) cosnx dx
? xcosnx dx
=
02x .
/
? 1 .
dx
31
= [
0
* sinn sin( n )+
(cosnx)
1]
=
00
*cosn cos( n )+1
=
0
*cosn cosn +1
a n = 0
b n =
? f(x)sinnxdx
b n =
? xsinnxdx
= 0 2
3
?
dx
1
=0
* cosnx cosn +
(sinnx)
1
=
.
/2 cosnx 0
=
( )
( )
b n = 2.
( )
the fourier series is
f(x) a
?(a
cosnx b
sinnx)
= 0 ? 0 2.
( 1 )
sinnx
= 2 ?
( )
sinnx
f(x) = 20
..1
Que: (6) f(x) = x 0 < x < 2??
Here,
a 0 =
? f(x)dx
=
? xdx
=
.
/
=
.
(4
)
a 0 = ??
a n =
? f(x)cosnxdx
Page 2
Free coaching of B.Sc (h) maths & JAM
For more 8130648819
ADVANCE ENGINEERING MATHEMATICS
BOOK ERN N KTREYSZ G
Exercise (10.2) only (5 16)
Que. 5 f(x) = x , ?? < x < ??
We know that, the fourier series is
f(x) a
? .a
cos
b
sin
/
where a
? f(x)dx
a
? f(x) cosnx dx
b n=
? f(x)sinnxdx
now, a 0 =
? f(x)dx
=
? xdx
= 0 (? f(x) x is odd fun
n
)
a
? f(x) cosnx dx
? xcosnx dx
=
02x .
/
? 1 .
dx
31
= [
0
* sinn sin( n )+
(cosnx)
1]
=
00
*cosn cos( n )+1
=
0
*cosn cosn +1
a n = 0
b n =
? f(x)sinnxdx
b n =
? xsinnxdx
= 0 2
3
?
dx
1
=0
* cosnx cosn +
(sinnx)
1
=
.
/2 cosnx 0
=
( )
( )
b n = 2.
( )
the fourier series is
f(x) a
?(a
cosnx b
sinnx)
= 0 ? 0 2.
( 1 )
sinnx
= 2 ?
( )
sinnx
f(x) = 20
..1
Que: (6) f(x) = x 0 < x < 2??
Here,
a 0 =
? f(x)dx
=
? xdx
=
.
/
=
.
(4
)
a 0 = ??
a n =
? f(x)cosnxdx
Free coaching of B.Sc (h) maths & JAM
For more 8130648819
=
? xcos nx dx
=
[2
3
? 1 .
dx
]
=
[0
.
/
]
=
.
(cos2n cos0 )
=
(1 1 ) 0
a n = 0
b n =
? f(x)sinnxdx
=
? xsinnx dx
=
[ .
/
? 1 .
dx
]
=
0
(2 cos2n 0 )
(sinnx)
1
=
0
.2 .1 0 1
b n =
the fourier series is
f(x) a
?(a
cosnx b
sinnx)
= ? .0
sinnx/
= 2 ? .
/
f(x) = ?? 2 0
1
Exercise 7, 8, 9 same as it is
Que 10 x |x| , ?? < x < ??
Sol
n
a 0 =
? f(x)dx
=
?
(x |x|)dx
=
[? xdx ?
|x|dx
]
=
[0 2 ? xdx
]
=
[2 2
3
]
a 0 = ?? /2
a n =
? f(x)cosnxdx
=
?
(x |x|)cosnxdx
=
? xcosnx
?
|x|cosnxdx
= 0
.2 ? xcosnxdx *? xcosnxdx 0
by que 5
=
0.
/
? 1 .
dx
1
=
0
(cosnx)
1
=
.
(cosn cos0 )
,( 1 )
1 -
a n =
,( 1 )
1 -
b n =
? f(x)cosnxdx
=
?
(|x| x) sinnx dx
=
[? xsinnx ?
|x|sinnxdx
]
=
0
( 1 )
2 ? xsinnx dx ? xsinnxdx
31
Page 3
Free coaching of B.Sc (h) maths & JAM
For more 8130648819
ADVANCE ENGINEERING MATHEMATICS
BOOK ERN N KTREYSZ G
Exercise (10.2) only (5 16)
Que. 5 f(x) = x , ?? < x < ??
We know that, the fourier series is
f(x) a
? .a
cos
b
sin
/
where a
? f(x)dx
a
? f(x) cosnx dx
b n=
? f(x)sinnxdx
now, a 0 =
? f(x)dx
=
? xdx
= 0 (? f(x) x is odd fun
n
)
a
? f(x) cosnx dx
? xcosnx dx
=
02x .
/
? 1 .
dx
31
= [
0
* sinn sin( n )+
(cosnx)
1]
=
00
*cosn cos( n )+1
=
0
*cosn cosn +1
a n = 0
b n =
? f(x)sinnxdx
b n =
? xsinnxdx
= 0 2
3
?
dx
1
=0
* cosnx cosn +
(sinnx)
1
=
.
/2 cosnx 0
=
( )
( )
b n = 2.
( )
the fourier series is
f(x) a
?(a
cosnx b
sinnx)
= 0 ? 0 2.
( 1 )
sinnx
= 2 ?
( )
sinnx
f(x) = 20
..1
Que: (6) f(x) = x 0 < x < 2??
Here,
a 0 =
? f(x)dx
=
? xdx
=
.
/
=
.
(4
)
a 0 = ??
a n =
? f(x)cosnxdx
Free coaching of B.Sc (h) maths & JAM
For more 8130648819
=
? xcos nx dx
=
[2
3
? 1 .
dx
]
=
[0
.
/
]
=
.
(cos2n cos0 )
=
(1 1 ) 0
a n = 0
b n =
? f(x)sinnxdx
=
? xsinnx dx
=
[ .
/
? 1 .
dx
]
=
0
(2 cos2n 0 )
(sinnx)
1
=
0
.2 .1 0 1
b n =
the fourier series is
f(x) a
?(a
cosnx b
sinnx)
= ? .0
sinnx/
= 2 ? .
/
f(x) = ?? 2 0
1
Exercise 7, 8, 9 same as it is
Que 10 x |x| , ?? < x < ??
Sol
n
a 0 =
? f(x)dx
=
?
(x |x|)dx
=
[? xdx ?
|x|dx
]
=
[0 2 ? xdx
]
=
[2 2
3
]
a 0 = ?? /2
a n =
? f(x)cosnxdx
=
?
(x |x|)cosnxdx
=
? xcosnx
?
|x|cosnxdx
= 0
.2 ? xcosnxdx *? xcosnxdx 0
by que 5
=
0.
/
? 1 .
dx
1
=
0
(cosnx)
1
=
.
(cosn cos0 )
,( 1 )
1 -
a n =
,( 1 )
1 -
b n =
? f(x)cosnxdx
=
?
(|x| x) sinnx dx
=
[? xsinnx ?
|x|sinnxdx
]
=
0
( 1 )
2 ? xsinnx dx ? xsinnxdx
31
Free coaching of B.Sc (h) maths & JAM
For more 8130648819
=
[
( 1 )
[ {.
/
?
}]]
Procced
b n = 4
( )
the required fourier series is
f(x) =
? 0
*( 1 )
1 +cosnx 2
( )
sinnx31
Que: (11) f(x) = 2
1 if x 0
1 if 0 x
3
Sol
n
: a 0 =
? f(x)dx
0? f(x)dx ? f(x)dx
1
=
0? dx ? dx
1
=
,* x|
*x|
-
=
, - 0
a n =
? f(x)cosnx dx
=
0? cosnx dx ? cosnxdx
1
=
.
/.0 0 0
a n = 0
b n =
? f(x)sinnxdx
=
? sinnxdx ? sinnx dx
=
[
|
(
|
]
=
0
(1 ( 1 )
( 1 )
1 )1
b n =
,1 ( 1 )
-
the fourier series is
f(x) = a 0 +? (a
cosnx b
sinnx)
= 0 + ?
,1 ( 1 )
-sinnx
=
0
0
0
1
f(x) =
0
1
Que (13): f(x) = {
1 if
x
1 if
x
}
Sol
n
a 0 =
0? f(x)dx ? f(x)dx
1
=
0? dx ? dx
1
= 0 (x)
dx (x)
1
=
02
.
/3 2
31
=
, - 0
a n = 0
a n = 0
? f(x)cosnx dx ? f(x)cosnxdx
1
= 0? cosnx dx ? cosnxdx
1
=[.
/
.
/
]
=
0sin
sin.
/ 2sin
sin
31
=
.
03 sin
sin
1
Page 4
Free coaching of B.Sc (h) maths & JAM
For more 8130648819
ADVANCE ENGINEERING MATHEMATICS
BOOK ERN N KTREYSZ G
Exercise (10.2) only (5 16)
Que. 5 f(x) = x , ?? < x < ??
We know that, the fourier series is
f(x) a
? .a
cos
b
sin
/
where a
? f(x)dx
a
? f(x) cosnx dx
b n=
? f(x)sinnxdx
now, a 0 =
? f(x)dx
=
? xdx
= 0 (? f(x) x is odd fun
n
)
a
? f(x) cosnx dx
? xcosnx dx
=
02x .
/
? 1 .
dx
31
= [
0
* sinn sin( n )+
(cosnx)
1]
=
00
*cosn cos( n )+1
=
0
*cosn cosn +1
a n = 0
b n =
? f(x)sinnxdx
b n =
? xsinnxdx
= 0 2
3
?
dx
1
=0
* cosnx cosn +
(sinnx)
1
=
.
/2 cosnx 0
=
( )
( )
b n = 2.
( )
the fourier series is
f(x) a
?(a
cosnx b
sinnx)
= 0 ? 0 2.
( 1 )
sinnx
= 2 ?
( )
sinnx
f(x) = 20
..1
Que: (6) f(x) = x 0 < x < 2??
Here,
a 0 =
? f(x)dx
=
? xdx
=
.
/
=
.
(4
)
a 0 = ??
a n =
? f(x)cosnxdx
Free coaching of B.Sc (h) maths & JAM
For more 8130648819
=
? xcos nx dx
=
[2
3
? 1 .
dx
]
=
[0
.
/
]
=
.
(cos2n cos0 )
=
(1 1 ) 0
a n = 0
b n =
? f(x)sinnxdx
=
? xsinnx dx
=
[ .
/
? 1 .
dx
]
=
0
(2 cos2n 0 )
(sinnx)
1
=
0
.2 .1 0 1
b n =
the fourier series is
f(x) a
?(a
cosnx b
sinnx)
= ? .0
sinnx/
= 2 ? .
/
f(x) = ?? 2 0
1
Exercise 7, 8, 9 same as it is
Que 10 x |x| , ?? < x < ??
Sol
n
a 0 =
? f(x)dx
=
?
(x |x|)dx
=
[? xdx ?
|x|dx
]
=
[0 2 ? xdx
]
=
[2 2
3
]
a 0 = ?? /2
a n =
? f(x)cosnxdx
=
?
(x |x|)cosnxdx
=
? xcosnx
?
|x|cosnxdx
= 0
.2 ? xcosnxdx *? xcosnxdx 0
by que 5
=
0.
/
? 1 .
dx
1
=
0
(cosnx)
1
=
.
(cosn cos0 )
,( 1 )
1 -
a n =
,( 1 )
1 -
b n =
? f(x)cosnxdx
=
?
(|x| x) sinnx dx
=
[? xsinnx ?
|x|sinnxdx
]
=
0
( 1 )
2 ? xsinnx dx ? xsinnxdx
31
Free coaching of B.Sc (h) maths & JAM
For more 8130648819
=
[
( 1 )
[ {.
/
?
}]]
Procced
b n = 4
( )
the required fourier series is
f(x) =
? 0
*( 1 )
1 +cosnx 2
( )
sinnx31
Que: (11) f(x) = 2
1 if x 0
1 if 0 x
3
Sol
n
: a 0 =
? f(x)dx
0? f(x)dx ? f(x)dx
1
=
0? dx ? dx
1
=
,* x|
*x|
-
=
, - 0
a n =
? f(x)cosnx dx
=
0? cosnx dx ? cosnxdx
1
=
.
/.0 0 0
a n = 0
b n =
? f(x)sinnxdx
=
? sinnxdx ? sinnx dx
=
[
|
(
|
]
=
0
(1 ( 1 )
( 1 )
1 )1
b n =
,1 ( 1 )
-
the fourier series is
f(x) = a 0 +? (a
cosnx b
sinnx)
= 0 + ?
,1 ( 1 )
-sinnx
=
0
0
0
1
f(x) =
0
1
Que (13): f(x) = {
1 if
x
1 if
x
}
Sol
n
a 0 =
0? f(x)dx ? f(x)dx
1
=
0? dx ? dx
1
= 0 (x)
dx (x)
1
=
02
.
/3 2
31
=
, - 0
a n = 0
a n = 0
? f(x)cosnx dx ? f(x)cosnxdx
1
= 0? cosnx dx ? cosnxdx
1
=[.
/
.
/
]
=
0sin
sin.
/ 2sin
sin
31
=
.
03 sin
sin
1
Free coaching of B.Sc (h) maths & JAM
For more 8130648819
Similarly, b n = 0
the fourier series is
f(x) = a 0+? a
cosnx b
sinnx
f(x) = ? a
cosnx
=
?
03 sin
sin
1cosnx
=
04cosx 4cos
1
Que (15) f(x) = 2
x
0
if 2 x 2
if 2 x 3 2
a 0 =
0? x dx ? 0 dx
1
=
.
/
= 0
a n =
?
xcosnx dx 0
=
[.x
/
?
dx
]
=
0
2
sin
sin.
/3 0 1
=
[? xsinnx dx 0
]
=
[ .
/
?
dx
]
0
(sinnx)
=
0sin
sin.
/1
=
.
.2 .sin
the fourier series is
f(x) =
? .
sin
/sinnx
ex (10.3)
if a fun
c
f(x) of period p =2?? has a fourier series , then
f (x) = a
? a
cos
b
sin
with the fourier coefficient of f(x) given by the Euler formula
a 0 =
? f(x)dx
a n =
? f(x)cos
dx
b n =
? f(x)sin
dx
f(x) = 2
1 if 1 x 0
1 if 0 x 1
, p =2?? 2 ? ?? =1
Sol
n
a 0 =
? f(x)dx
.
? f(x)dx
=
0? dx ? dx
1
=
, (x)
(x)
-
=
, (1 ) 1 - 0
a n =
? f(x)cos
dx
= ? cosn xdx ? cosn dx
= .
/
.
/
= 0
(sin0 sin( n ))1
,sinn sin0 -
= 0
b n =
? f(x)sin
dx ? f(x)sin
dx
Page 5
Free coaching of B.Sc (h) maths & JAM
For more 8130648819
ADVANCE ENGINEERING MATHEMATICS
BOOK ERN N KTREYSZ G
Exercise (10.2) only (5 16)
Que. 5 f(x) = x , ?? < x < ??
We know that, the fourier series is
f(x) a
? .a
cos
b
sin
/
where a
? f(x)dx
a
? f(x) cosnx dx
b n=
? f(x)sinnxdx
now, a 0 =
? f(x)dx
=
? xdx
= 0 (? f(x) x is odd fun
n
)
a
? f(x) cosnx dx
? xcosnx dx
=
02x .
/
? 1 .
dx
31
= [
0
* sinn sin( n )+
(cosnx)
1]
=
00
*cosn cos( n )+1
=
0
*cosn cosn +1
a n = 0
b n =
? f(x)sinnxdx
b n =
? xsinnxdx
= 0 2
3
?
dx
1
=0
* cosnx cosn +
(sinnx)
1
=
.
/2 cosnx 0
=
( )
( )
b n = 2.
( )
the fourier series is
f(x) a
?(a
cosnx b
sinnx)
= 0 ? 0 2.
( 1 )
sinnx
= 2 ?
( )
sinnx
f(x) = 20
..1
Que: (6) f(x) = x 0 < x < 2??
Here,
a 0 =
? f(x)dx
=
? xdx
=
.
/
=
.
(4
)
a 0 = ??
a n =
? f(x)cosnxdx
Free coaching of B.Sc (h) maths & JAM
For more 8130648819
=
? xcos nx dx
=
[2
3
? 1 .
dx
]
=
[0
.
/
]
=
.
(cos2n cos0 )
=
(1 1 ) 0
a n = 0
b n =
? f(x)sinnxdx
=
? xsinnx dx
=
[ .
/
? 1 .
dx
]
=
0
(2 cos2n 0 )
(sinnx)
1
=
0
.2 .1 0 1
b n =
the fourier series is
f(x) a
?(a
cosnx b
sinnx)
= ? .0
sinnx/
= 2 ? .
/
f(x) = ?? 2 0
1
Exercise 7, 8, 9 same as it is
Que 10 x |x| , ?? < x < ??
Sol
n
a 0 =
? f(x)dx
=
?
(x |x|)dx
=
[? xdx ?
|x|dx
]
=
[0 2 ? xdx
]
=
[2 2
3
]
a 0 = ?? /2
a n =
? f(x)cosnxdx
=
?
(x |x|)cosnxdx
=
? xcosnx
?
|x|cosnxdx
= 0
.2 ? xcosnxdx *? xcosnxdx 0
by que 5
=
0.
/
? 1 .
dx
1
=
0
(cosnx)
1
=
.
(cosn cos0 )
,( 1 )
1 -
a n =
,( 1 )
1 -
b n =
? f(x)cosnxdx
=
?
(|x| x) sinnx dx
=
[? xsinnx ?
|x|sinnxdx
]
=
0
( 1 )
2 ? xsinnx dx ? xsinnxdx
31
Free coaching of B.Sc (h) maths & JAM
For more 8130648819
=
[
( 1 )
[ {.
/
?
}]]
Procced
b n = 4
( )
the required fourier series is
f(x) =
? 0
*( 1 )
1 +cosnx 2
( )
sinnx31
Que: (11) f(x) = 2
1 if x 0
1 if 0 x
3
Sol
n
: a 0 =
? f(x)dx
0? f(x)dx ? f(x)dx
1
=
0? dx ? dx
1
=
,* x|
*x|
-
=
, - 0
a n =
? f(x)cosnx dx
=
0? cosnx dx ? cosnxdx
1
=
.
/.0 0 0
a n = 0
b n =
? f(x)sinnxdx
=
? sinnxdx ? sinnx dx
=
[
|
(
|
]
=
0
(1 ( 1 )
( 1 )
1 )1
b n =
,1 ( 1 )
-
the fourier series is
f(x) = a 0 +? (a
cosnx b
sinnx)
= 0 + ?
,1 ( 1 )
-sinnx
=
0
0
0
1
f(x) =
0
1
Que (13): f(x) = {
1 if
x
1 if
x
}
Sol
n
a 0 =
0? f(x)dx ? f(x)dx
1
=
0? dx ? dx
1
= 0 (x)
dx (x)
1
=
02
.
/3 2
31
=
, - 0
a n = 0
a n = 0
? f(x)cosnx dx ? f(x)cosnxdx
1
= 0? cosnx dx ? cosnxdx
1
=[.
/
.
/
]
=
0sin
sin.
/ 2sin
sin
31
=
.
03 sin
sin
1
Free coaching of B.Sc (h) maths & JAM
For more 8130648819
Similarly, b n = 0
the fourier series is
f(x) = a 0+? a
cosnx b
sinnx
f(x) = ? a
cosnx
=
?
03 sin
sin
1cosnx
=
04cosx 4cos
1
Que (15) f(x) = 2
x
0
if 2 x 2
if 2 x 3 2
a 0 =
0? x dx ? 0 dx
1
=
.
/
= 0
a n =
?
xcosnx dx 0
=
[.x
/
?
dx
]
=
0
2
sin
sin.
/3 0 1
=
[? xsinnx dx 0
]
=
[ .
/
?
dx
]
0
(sinnx)
=
0sin
sin.
/1
=
.
.2 .sin
the fourier series is
f(x) =
? .
sin
/sinnx
ex (10.3)
if a fun
c
f(x) of period p =2?? has a fourier series , then
f (x) = a
? a
cos
b
sin
with the fourier coefficient of f(x) given by the Euler formula
a 0 =
? f(x)dx
a n =
? f(x)cos
dx
b n =
? f(x)sin
dx
f(x) = 2
1 if 1 x 0
1 if 0 x 1
, p =2?? 2 ? ?? =1
Sol
n
a 0 =
? f(x)dx
.
? f(x)dx
=
0? dx ? dx
1
=
, (x)
(x)
-
=
, (1 ) 1 - 0
a n =
? f(x)cos
dx
= ? cosn xdx ? cosn dx
= .
/
.
/
= 0
(sin0 sin( n ))1
,sinn sin0 -
= 0
b n =
? f(x)sin
dx ? f(x)sin
dx
Free coaching of B.Sc (h) maths & JAM
For more 8130648819
= ? sinn xdx ? sinn xdx
=.
/
.
/
=
,*cos0 cos( n )+ *cosn cos0 +-
=
2,1 ( 1 )
-
the required fourier series is
f(x) = 0 + ? 0
2
( ( )
)
3
Read More