Page 1
Free coa M
S S S S
ote
(a) evolution a out the x axis he urve surfa e S of soli generate y the revolution a out x axis
of the area oun e y the urve y f (x) the or inates x a x an the x axis is
? y s
? y
s
x
x S ? y
v
, (
y
x
)
- x
where s is the length of the ar measure from x a to any p P(x y)
( ) evolution a out the y axis Similarly the urve surfa e S of the soli gegerate y the revolutions a out the
x axis of the area oun e y the urve x f(y) the lines y a y an the y axis is
? x s
where s is the length of the ar measure from y a to any point (x y)
S ? x
s
y
y
S ? xv
( (
x
y
)
) y
( ) Surfa e formula for Parametri equations et the given urve e x f(t) y f(t) he urve surfa e of the soli
forme y the revolution a out the x axis is
? y
s
t
t ( etween the suita le limits)
or the ar of the ur le lying in the st qua rant x varies from to a
where
s
t
v
,(
x
t
)
(
y
t
)
-
Similarly the urve surfa es S of the soli forme y the revolution a out the y axis is ? x
s
t
t
( etween proper limits)
where
s
t
v
,(
x
t
)
(
y
t
)
-
( ) Surfa e formula for Polar equations et the equation of the urve e r f( ) hen the urve surfa e generate
y the revolution a out the initial line of the ar inter epte etween the ra ii ve tors an is
? (rsin )
s
where
s
v
,r
(
r
)
-
s ? y
s
r
r
where
s
r
v
, (r
r
)
-
ote he surfa e of a sphere of ra ius a is a
x in surfa e of a one whose semi verti al angle is an ase a ir le of ra ius r
Solution he generating urve is
y xtan
y
x
tan
s
x
v
, (
y
x
)
- v* tan
+ se
en e the require surfa e is
? y s
? y
s
x
x
? (xtan )
(se ) x se tan *
x
+
r
s
x in the area of the surfa e forme y the revolution of para ola y
ax a out the x axis y the ar from the
vertex to one en of the latus re tum
Solution he given equation is y
ax (i)
ifferentiating (i) w r t x we get
y
y
x
a
y
x
a
y
Page 2
Free coa M
S S S S
ote
(a) evolution a out the x axis he urve surfa e S of soli generate y the revolution a out x axis
of the area oun e y the urve y f (x) the or inates x a x an the x axis is
? y s
? y
s
x
x S ? y
v
, (
y
x
)
- x
where s is the length of the ar measure from x a to any p P(x y)
( ) evolution a out the y axis Similarly the urve surfa e S of the soli gegerate y the revolutions a out the
x axis of the area oun e y the urve x f(y) the lines y a y an the y axis is
? x s
where s is the length of the ar measure from y a to any point (x y)
S ? x
s
y
y
S ? xv
( (
x
y
)
) y
( ) Surfa e formula for Parametri equations et the given urve e x f(t) y f(t) he urve surfa e of the soli
forme y the revolution a out the x axis is
? y
s
t
t ( etween the suita le limits)
or the ar of the ur le lying in the st qua rant x varies from to a
where
s
t
v
,(
x
t
)
(
y
t
)
-
Similarly the urve surfa es S of the soli forme y the revolution a out the y axis is ? x
s
t
t
( etween proper limits)
where
s
t
v
,(
x
t
)
(
y
t
)
-
( ) Surfa e formula for Polar equations et the equation of the urve e r f( ) hen the urve surfa e generate
y the revolution a out the initial line of the ar inter epte etween the ra ii ve tors an is
? (rsin )
s
where
s
v
,r
(
r
)
-
s ? y
s
r
r
where
s
r
v
, (r
r
)
-
ote he surfa e of a sphere of ra ius a is a
x in surfa e of a one whose semi verti al angle is an ase a ir le of ra ius r
Solution he generating urve is
y xtan
y
x
tan
s
x
v
, (
y
x
)
- v* tan
+ se
en e the require surfa e is
? y s
? y
s
x
x
? (xtan )
(se ) x se tan *
x
+
r
s
x in the area of the surfa e forme y the revolution of para ola y
ax a out the x axis y the ar from the
vertex to one en of the latus re tum
Solution he given equation is y
ax (i)
ifferentiating (i) w r t x we get
y
y
x
a
y
x
a
y
Free coach AM
s
x
v
, (
y
x
)
- v,
a
y
- va
v(x a)
y
o r the require surfa e x varies from to a
en e the require surfa e
? y
s
x
x
? y
vav(x a)
y
x
va? (x a)
/
x va{
(x a)
/
}
va
[( a )
/
a
/
]
a
[ v ]
x in the surfa e of the soli forme y the revolution a out x axis of the loop of the urve x t
y t
t
Solution he given equations are
x t
y t
t
x
t
t an
y
t
( t
)
s
t
v
,(
x
t
)
(
y
t
)
-
s
t
v* t
( t
)
+ v( t
)
s
t
( t
)
Putting y we get t an t v
en e for the loop t varies from to v
he require surfa e
? y s
? y
s
t
t
v
? (t
t
)
v
( t
) t
? ( t t
t
) t
v
[
t
t
t
]
v
[
]
x in the surfa e of the soli generate y the revolution of the astroi x
/
y
/
or x a os
t y asin
t
a out the x axis
Solution he given parametri equations are
x a os
t y asin
t
x
t
a os
tsint an
y
t
a sin
t os t
s
t
v
,(
x
t
)
(
y
t
)
-
s
t
v( a
os
sin
t a
sin
t os
t)
a sint os t
en e the require surfa e
? y
/
s
t
? asin
t a
/
sint os t t
a
? sin
t
/
os t t
a
( erify )
x in the surfa e area of the soli generate y revolving the y loi x a( sin ) y a( os )
a out the x axis
Solution he given parametri equations are
x a( sin ) y a( os )
x
a( os ) an
y
asin
s
v
,(
x
)
(
y
)
- v*a
( os )
a
sin
+ av ( os )
Page 3
Free coa M
S S S S
ote
(a) evolution a out the x axis he urve surfa e S of soli generate y the revolution a out x axis
of the area oun e y the urve y f (x) the or inates x a x an the x axis is
? y s
? y
s
x
x S ? y
v
, (
y
x
)
- x
where s is the length of the ar measure from x a to any p P(x y)
( ) evolution a out the y axis Similarly the urve surfa e S of the soli gegerate y the revolutions a out the
x axis of the area oun e y the urve x f(y) the lines y a y an the y axis is
? x s
where s is the length of the ar measure from y a to any point (x y)
S ? x
s
y
y
S ? xv
( (
x
y
)
) y
( ) Surfa e formula for Parametri equations et the given urve e x f(t) y f(t) he urve surfa e of the soli
forme y the revolution a out the x axis is
? y
s
t
t ( etween the suita le limits)
or the ar of the ur le lying in the st qua rant x varies from to a
where
s
t
v
,(
x
t
)
(
y
t
)
-
Similarly the urve surfa es S of the soli forme y the revolution a out the y axis is ? x
s
t
t
( etween proper limits)
where
s
t
v
,(
x
t
)
(
y
t
)
-
( ) Surfa e formula for Polar equations et the equation of the urve e r f( ) hen the urve surfa e generate
y the revolution a out the initial line of the ar inter epte etween the ra ii ve tors an is
? (rsin )
s
where
s
v
,r
(
r
)
-
s ? y
s
r
r
where
s
r
v
, (r
r
)
-
ote he surfa e of a sphere of ra ius a is a
x in surfa e of a one whose semi verti al angle is an ase a ir le of ra ius r
Solution he generating urve is
y xtan
y
x
tan
s
x
v
, (
y
x
)
- v* tan
+ se
en e the require surfa e is
? y s
? y
s
x
x
? (xtan )
(se ) x se tan *
x
+
r
s
x in the area of the surfa e forme y the revolution of para ola y
ax a out the x axis y the ar from the
vertex to one en of the latus re tum
Solution he given equation is y
ax (i)
ifferentiating (i) w r t x we get
y
y
x
a
y
x
a
y
Free coach AM
s
x
v
, (
y
x
)
- v,
a
y
- va
v(x a)
y
o r the require surfa e x varies from to a
en e the require surfa e
? y
s
x
x
? y
vav(x a)
y
x
va? (x a)
/
x va{
(x a)
/
}
va
[( a )
/
a
/
]
a
[ v ]
x in the surfa e of the soli forme y the revolution a out x axis of the loop of the urve x t
y t
t
Solution he given equations are
x t
y t
t
x
t
t an
y
t
( t
)
s
t
v
,(
x
t
)
(
y
t
)
-
s
t
v* t
( t
)
+ v( t
)
s
t
( t
)
Putting y we get t an t v
en e for the loop t varies from to v
he require surfa e
? y s
? y
s
t
t
v
? (t
t
)
v
( t
) t
? ( t t
t
) t
v
[
t
t
t
]
v
[
]
x in the surfa e of the soli generate y the revolution of the astroi x
/
y
/
or x a os
t y asin
t
a out the x axis
Solution he given parametri equations are
x a os
t y asin
t
x
t
a os
tsint an
y
t
a sin
t os t
s
t
v
,(
x
t
)
(
y
t
)
-
s
t
v( a
os
sin
t a
sin
t os
t)
a sint os t
en e the require surfa e
? y
/
s
t
? asin
t a
/
sint os t t
a
? sin
t
/
os t t
a
( erify )
x in the surfa e area of the soli generate y revolving the y loi x a( sin ) y a( os )
a out the x axis
Solution he given parametri equations are
x a( sin ) y a( os )
x
a( os ) an
y
asin
s
v
,(
x
)
(
y
)
- v*a
( os )
a
sin
+ av ( os )
Fre M
s
a
v
( sin
) a sin(
)
he require surfa e area
? y
s
? a( os )
a sin(
)
a
? sin
( / )
a
? sin
( / )
a
( erify )
x in the area of the surfa e of revolving the urve r a os a out the initial line
Solution he given ure is r a os ( )
ifferentiating ( ) w r t we get
r
a sin
s
v
,r
(
r
)
- v* a
os
a
sin
+
s
a
en e the require surfa e
? y
/
s
? rsin a
/
a ? a sin os
/
a
? sin os
/
a
( erify )
in the surfa e of the soli generate y the revolution of the lemnis ate r
a
os a out the initial line
Solution he urve is r
a os
ifferentiating (i) w r t we get
r
r
a
sin
r
a
sin
r
s
v
{ r
(
r
)}
v,a
os
a
sin
r
-
r
v*r
a
os a
sin
+
r
v*a
os
a
sin
+
s
a
r
he require surfa e
? y
s
? rsin
a
r
a
? sin
v a
(v ) verify
in the surfa e of the soli forme y the revolution of ar ioi r a( os ) a out the initial line
Solution he given urve is r a( os )
r
asin
s
v
,r
(
r
)
- v*a
( os )
a
sin
+
s
av* ( os )+ a os
en e the require surfa e
? y
s
? rsin a os
? a( os )sin a os
a
verify
in the surfa e of the soli forme y the revolution of the ar io r a( os ) a out the initial line
Solution the given urve is r a( os )
r
asin
s
v
{ r
(
r
)} v*a
( os )
a
sin
+
Page 4
Free coa M
S S S S
ote
(a) evolution a out the x axis he urve surfa e S of soli generate y the revolution a out x axis
of the area oun e y the urve y f (x) the or inates x a x an the x axis is
? y s
? y
s
x
x S ? y
v
, (
y
x
)
- x
where s is the length of the ar measure from x a to any p P(x y)
( ) evolution a out the y axis Similarly the urve surfa e S of the soli gegerate y the revolutions a out the
x axis of the area oun e y the urve x f(y) the lines y a y an the y axis is
? x s
where s is the length of the ar measure from y a to any point (x y)
S ? x
s
y
y
S ? xv
( (
x
y
)
) y
( ) Surfa e formula for Parametri equations et the given urve e x f(t) y f(t) he urve surfa e of the soli
forme y the revolution a out the x axis is
? y
s
t
t ( etween the suita le limits)
or the ar of the ur le lying in the st qua rant x varies from to a
where
s
t
v
,(
x
t
)
(
y
t
)
-
Similarly the urve surfa es S of the soli forme y the revolution a out the y axis is ? x
s
t
t
( etween proper limits)
where
s
t
v
,(
x
t
)
(
y
t
)
-
( ) Surfa e formula for Polar equations et the equation of the urve e r f( ) hen the urve surfa e generate
y the revolution a out the initial line of the ar inter epte etween the ra ii ve tors an is
? (rsin )
s
where
s
v
,r
(
r
)
-
s ? y
s
r
r
where
s
r
v
, (r
r
)
-
ote he surfa e of a sphere of ra ius a is a
x in surfa e of a one whose semi verti al angle is an ase a ir le of ra ius r
Solution he generating urve is
y xtan
y
x
tan
s
x
v
, (
y
x
)
- v* tan
+ se
en e the require surfa e is
? y s
? y
s
x
x
? (xtan )
(se ) x se tan *
x
+
r
s
x in the area of the surfa e forme y the revolution of para ola y
ax a out the x axis y the ar from the
vertex to one en of the latus re tum
Solution he given equation is y
ax (i)
ifferentiating (i) w r t x we get
y
y
x
a
y
x
a
y
Free coach AM
s
x
v
, (
y
x
)
- v,
a
y
- va
v(x a)
y
o r the require surfa e x varies from to a
en e the require surfa e
? y
s
x
x
? y
vav(x a)
y
x
va? (x a)
/
x va{
(x a)
/
}
va
[( a )
/
a
/
]
a
[ v ]
x in the surfa e of the soli forme y the revolution a out x axis of the loop of the urve x t
y t
t
Solution he given equations are
x t
y t
t
x
t
t an
y
t
( t
)
s
t
v
,(
x
t
)
(
y
t
)
-
s
t
v* t
( t
)
+ v( t
)
s
t
( t
)
Putting y we get t an t v
en e for the loop t varies from to v
he require surfa e
? y s
? y
s
t
t
v
? (t
t
)
v
( t
) t
? ( t t
t
) t
v
[
t
t
t
]
v
[
]
x in the surfa e of the soli generate y the revolution of the astroi x
/
y
/
or x a os
t y asin
t
a out the x axis
Solution he given parametri equations are
x a os
t y asin
t
x
t
a os
tsint an
y
t
a sin
t os t
s
t
v
,(
x
t
)
(
y
t
)
-
s
t
v( a
os
sin
t a
sin
t os
t)
a sint os t
en e the require surfa e
? y
/
s
t
? asin
t a
/
sint os t t
a
? sin
t
/
os t t
a
( erify )
x in the surfa e area of the soli generate y revolving the y loi x a( sin ) y a( os )
a out the x axis
Solution he given parametri equations are
x a( sin ) y a( os )
x
a( os ) an
y
asin
s
v
,(
x
)
(
y
)
- v*a
( os )
a
sin
+ av ( os )
Fre M
s
a
v
( sin
) a sin(
)
he require surfa e area
? y
s
? a( os )
a sin(
)
a
? sin
( / )
a
? sin
( / )
a
( erify )
x in the area of the surfa e of revolving the urve r a os a out the initial line
Solution he given ure is r a os ( )
ifferentiating ( ) w r t we get
r
a sin
s
v
,r
(
r
)
- v* a
os
a
sin
+
s
a
en e the require surfa e
? y
/
s
? rsin a
/
a ? a sin os
/
a
? sin os
/
a
( erify )
in the surfa e of the soli generate y the revolution of the lemnis ate r
a
os a out the initial line
Solution he urve is r
a os
ifferentiating (i) w r t we get
r
r
a
sin
r
a
sin
r
s
v
{ r
(
r
)}
v,a
os
a
sin
r
-
r
v*r
a
os a
sin
+
r
v*a
os
a
sin
+
s
a
r
he require surfa e
? y
s
? rsin
a
r
a
? sin
v a
(v ) verify
in the surfa e of the soli forme y the revolution of ar ioi r a( os ) a out the initial line
Solution he given urve is r a( os )
r
asin
s
v
,r
(
r
)
- v*a
( os )
a
sin
+
s
av* ( os )+ a os
en e the require surfa e
? y
s
? rsin a os
? a( os )sin a os
a
verify
in the surfa e of the soli forme y the revolution of the ar io r a( os ) a out the initial line
Solution the given urve is r a( os )
r
asin
s
v
{ r
(
r
)} v*a
( os )
a
sin
+
Free co
s
av ( os ) a sin
require surfa e
? y
s
? rsin a sin
a
?( os )sin sin
a
? os
sin
a
verify
x ? ? (x
y
) x y
Sol
? (x
y
y
)
x
? (x
) (
) x ?
( x
) x (
x
x
)
x ? ? (x
y
) x y
Sol
? (x
y
y
)
x
? (x
x
) x
*
x
x
+
x ? ? xy x y
Sol
? x x ? y y
(
x
)
(
y
)
x valuate ? ? xy
y x
v
Sol
? ? xy
y x
v
? 0 x y
|
v
1 x
, x is treate as a onstant-
? 0 x (vx)
x (x
)
1 x
? , x
x
- x
, x
x
-
x ?xy(x
y
) x y
, a -
Sol
??xy(x
y
) x y
? ? xy(x
y
) x y
? ? (x
y xy
)
x y
? x *
x
y
xy
+
a
(a
) ( erify )
or the fun tion f efine y f(x y)
{
y
if x y
x
if y x
Show that? x
? f y
? y ? f x
Solution onsi er ? f y
? f y
? f y
?
x
y ?
y
y
0
y
x
1
[
y
]
x
( )
x
? ( ) x
(x)
? x
? f y
? f x
? f x ? f x
?
y
x
?
x
x
[
x
y
]
[
x
]
y
y
? y
(y)
? y
? f x
Page 5
Free coa M
S S S S
ote
(a) evolution a out the x axis he urve surfa e S of soli generate y the revolution a out x axis
of the area oun e y the urve y f (x) the or inates x a x an the x axis is
? y s
? y
s
x
x S ? y
v
, (
y
x
)
- x
where s is the length of the ar measure from x a to any p P(x y)
( ) evolution a out the y axis Similarly the urve surfa e S of the soli gegerate y the revolutions a out the
x axis of the area oun e y the urve x f(y) the lines y a y an the y axis is
? x s
where s is the length of the ar measure from y a to any point (x y)
S ? x
s
y
y
S ? xv
( (
x
y
)
) y
( ) Surfa e formula for Parametri equations et the given urve e x f(t) y f(t) he urve surfa e of the soli
forme y the revolution a out the x axis is
? y
s
t
t ( etween the suita le limits)
or the ar of the ur le lying in the st qua rant x varies from to a
where
s
t
v
,(
x
t
)
(
y
t
)
-
Similarly the urve surfa es S of the soli forme y the revolution a out the y axis is ? x
s
t
t
( etween proper limits)
where
s
t
v
,(
x
t
)
(
y
t
)
-
( ) Surfa e formula for Polar equations et the equation of the urve e r f( ) hen the urve surfa e generate
y the revolution a out the initial line of the ar inter epte etween the ra ii ve tors an is
? (rsin )
s
where
s
v
,r
(
r
)
-
s ? y
s
r
r
where
s
r
v
, (r
r
)
-
ote he surfa e of a sphere of ra ius a is a
x in surfa e of a one whose semi verti al angle is an ase a ir le of ra ius r
Solution he generating urve is
y xtan
y
x
tan
s
x
v
, (
y
x
)
- v* tan
+ se
en e the require surfa e is
? y s
? y
s
x
x
? (xtan )
(se ) x se tan *
x
+
r
s
x in the area of the surfa e forme y the revolution of para ola y
ax a out the x axis y the ar from the
vertex to one en of the latus re tum
Solution he given equation is y
ax (i)
ifferentiating (i) w r t x we get
y
y
x
a
y
x
a
y
Free coach AM
s
x
v
, (
y
x
)
- v,
a
y
- va
v(x a)
y
o r the require surfa e x varies from to a
en e the require surfa e
? y
s
x
x
? y
vav(x a)
y
x
va? (x a)
/
x va{
(x a)
/
}
va
[( a )
/
a
/
]
a
[ v ]
x in the surfa e of the soli forme y the revolution a out x axis of the loop of the urve x t
y t
t
Solution he given equations are
x t
y t
t
x
t
t an
y
t
( t
)
s
t
v
,(
x
t
)
(
y
t
)
-
s
t
v* t
( t
)
+ v( t
)
s
t
( t
)
Putting y we get t an t v
en e for the loop t varies from to v
he require surfa e
? y s
? y
s
t
t
v
? (t
t
)
v
( t
) t
? ( t t
t
) t
v
[
t
t
t
]
v
[
]
x in the surfa e of the soli generate y the revolution of the astroi x
/
y
/
or x a os
t y asin
t
a out the x axis
Solution he given parametri equations are
x a os
t y asin
t
x
t
a os
tsint an
y
t
a sin
t os t
s
t
v
,(
x
t
)
(
y
t
)
-
s
t
v( a
os
sin
t a
sin
t os
t)
a sint os t
en e the require surfa e
? y
/
s
t
? asin
t a
/
sint os t t
a
? sin
t
/
os t t
a
( erify )
x in the surfa e area of the soli generate y revolving the y loi x a( sin ) y a( os )
a out the x axis
Solution he given parametri equations are
x a( sin ) y a( os )
x
a( os ) an
y
asin
s
v
,(
x
)
(
y
)
- v*a
( os )
a
sin
+ av ( os )
Fre M
s
a
v
( sin
) a sin(
)
he require surfa e area
? y
s
? a( os )
a sin(
)
a
? sin
( / )
a
? sin
( / )
a
( erify )
x in the area of the surfa e of revolving the urve r a os a out the initial line
Solution he given ure is r a os ( )
ifferentiating ( ) w r t we get
r
a sin
s
v
,r
(
r
)
- v* a
os
a
sin
+
s
a
en e the require surfa e
? y
/
s
? rsin a
/
a ? a sin os
/
a
? sin os
/
a
( erify )
in the surfa e of the soli generate y the revolution of the lemnis ate r
a
os a out the initial line
Solution he urve is r
a os
ifferentiating (i) w r t we get
r
r
a
sin
r
a
sin
r
s
v
{ r
(
r
)}
v,a
os
a
sin
r
-
r
v*r
a
os a
sin
+
r
v*a
os
a
sin
+
s
a
r
he require surfa e
? y
s
? rsin
a
r
a
? sin
v a
(v ) verify
in the surfa e of the soli forme y the revolution of ar ioi r a( os ) a out the initial line
Solution he given urve is r a( os )
r
asin
s
v
,r
(
r
)
- v*a
( os )
a
sin
+
s
av* ( os )+ a os
en e the require surfa e
? y
s
? rsin a os
? a( os )sin a os
a
verify
in the surfa e of the soli forme y the revolution of the ar io r a( os ) a out the initial line
Solution the given urve is r a( os )
r
asin
s
v
{ r
(
r
)} v*a
( os )
a
sin
+
Free co
s
av ( os ) a sin
require surfa e
? y
s
? rsin a sin
a
?( os )sin sin
a
? os
sin
a
verify
x ? ? (x
y
) x y
Sol
? (x
y
y
)
x
? (x
) (
) x ?
( x
) x (
x
x
)
x ? ? (x
y
) x y
Sol
? (x
y
y
)
x
? (x
x
) x
*
x
x
+
x ? ? xy x y
Sol
? x x ? y y
(
x
)
(
y
)
x valuate ? ? xy
y x
v
Sol
? ? xy
y x
v
? 0 x y
|
v
1 x
, x is treate as a onstant-
? 0 x (vx)
x (x
)
1 x
? , x
x
- x
, x
x
-
x ?xy(x
y
) x y
, a -
Sol
??xy(x
y
) x y
? ? xy(x
y
) x y
? ? (x
y xy
)
x y
? x *
x
y
xy
+
a
(a
) ( erify )
or the fun tion f efine y f(x y)
{
y
if x y
x
if y x
Show that? x
? f y
? y ? f x
Solution onsi er ? f y
? f y
? f y
?
x
y ?
y
y
0
y
x
1
[
y
]
x
( )
x
? ( ) x
(x)
? x
? f y
? f x
? f x ? f x
?
y
x
?
x
x
[
x
y
]
[
x
]
y
y
? y
(y)
? y
? f x
Free coa
? x
? f y
? y
? f x
x f f(x y) {
y
x y
x
y x
otherwise
Prove that ? x
? f(x y) y
? y
? f(x y) x
Solution onsi er
? f(x y) y
? f(x y) y
? f(x y) y
? ( x
) y
? ( y
) y
( x
)(y)
(
y
)
x
(x )
( x
)
x
? x
? f(x y) y
? (
x
) x
( )
gain onsi er
? f(x y) x
? f(x y) x
? f(x y) y
? ( y
) x
? ( x
) x
( y
)(x)
(
x
)
y
? y
? f(x y) x
( )
from ( ) ( )
? x
? f(x y) y
? y
? f(x y) x
hange of or er of ntegration
x ? { ? f(x y) y
v
} x
x x a an y x y
v
ax x
Solution n solving y x an y
v
ax x
v
ax x
x
ax x
x
x x a
gain y
v
ax x
y
ax x
x
y
ax
(x a)
y
a
(x a)
a
y
x a va
y
x a va
y
? { ? f(x y) y
v
} x
? ,? f(x y) x
v
- y
hange the or er of integration in the ou le integral ? ? f(x y) x y
v
v
int ? ? f(x y) x y
v
v
? ? f(x y) y x
? ? f(x y) x y
v
? ? f(x y) x y
hange the or er of integration ? x
? f(x y) y
v
int ? x
? f(x y) y
v
? y
? f(x y) x
x y hanging the or er of integration prove that ? x
?
y y
( xy)
( y
)
/
x x an y x y
x
xy ( e tangular yper ola )
n solving
xy an y x
x
x
Read More