Download, print and study this document offline |
Page 1 Free coaching of B.Sc (h) maths & JAM For more 8130648819 Page 2 Free coaching of B.Sc (h) maths & JAM For more 8130648819 Free coaching of B.Sc (h) maths & JAM For more 8130648819 ? let g ( z ) = ? a z …… …… ( ii ) ? R. O. C of eq n (ii) = 1/ lim S up | a | / = 1/R 1 ? g ( z ) conv erg es fo r | z | /R 1 Let f 2(z) = g(1/z) f 2 ( z ) ? a -kz k ? f 2(z) cgs if g(1/z) cgs if | | i.e. if |z| > R 1 ? f 2(z) cgs for |z| > R 1 f(z) = ? a z = f 1(z) + f 2(z) ? ? a z cgs for |z| > R 1 , |z|<R 2 Hence, the Laurent expansion ? a z cgs in the domain D = {z : |z| > R 1 & |z| < R 2} 9.9 theorem : If f is analytic in the annulus A = {z |R 1 < |z| < R 2 +, a nd then f or an y z , f(z) has a representation of the form f(z) = ? a z is called Laurent expansion about origin. Pro of , can see in the b o ok or in V ivek ’s note s Corollary 9.10 If f is analytic in the annulus R 1 | z z 0| < R 2, and then f has a unique representation, f(z) = ? a ( z z ) where a k = ( ) ( ) dz an d C C ( z 0; R) with R 1 < R < R 2. Proof in book & vivek notes Example/pg 111 (i) find Laurent series expansion ? z . f(z) = ( ) Sol n f(z) = = z+2+ ? z which is Laurent expansion about origin ? z (ii) f(z) = ( ) Sol n f(z) = ( ) is not analytic at 0 & 1 (where f is not defined is singularity) ? f ( z ) = ( z ) = ( z z ) = z z Which is Laurent expansion about origin. ( iii ) f ( z ) z ( z ) w r it e L aur en t series exp an sion ab out z S ol ution f ( z ) z ( z ) ( z ) z ( z ) ( z ) ( z ) , z - ( z ) , ( z ) - ( z ) * ( z ) 3 ( z ) ( z ) + z 3 ( z ) ( z ) f or | z | ( iv ) f in d the L aur en t series e xpan sion of exp ( * ab out z ( or igin ) . Sol n f(z) = e / z ( z * 3 ( z * w hich is L aur en t exp . Que. 7/113 find the Laurent exp. for ( ) z z … a - z - a - z - a - z - ? a z a z a z ? Comes in (ii) comes in (i) Page 3 Free coaching of B.Sc (h) maths & JAM For more 8130648819 Free coaching of B.Sc (h) maths & JAM For more 8130648819 ? let g ( z ) = ? a z …… …… ( ii ) ? R. O. C of eq n (ii) = 1/ lim S up | a | / = 1/R 1 ? g ( z ) conv erg es fo r | z | /R 1 Let f 2(z) = g(1/z) f 2 ( z ) ? a -kz k ? f 2(z) cgs if g(1/z) cgs if | | i.e. if |z| > R 1 ? f 2(z) cgs for |z| > R 1 f(z) = ? a z = f 1(z) + f 2(z) ? ? a z cgs for |z| > R 1 , |z|<R 2 Hence, the Laurent expansion ? a z cgs in the domain D = {z : |z| > R 1 & |z| < R 2} 9.9 theorem : If f is analytic in the annulus A = {z |R 1 < |z| < R 2 +, a nd then f or an y z , f(z) has a representation of the form f(z) = ? a z is called Laurent expansion about origin. Pro of , can see in the b o ok or in V ivek ’s note s Corollary 9.10 If f is analytic in the annulus R 1 | z z 0| < R 2, and then f has a unique representation, f(z) = ? a ( z z ) where a k = ( ) ( ) dz an d C C ( z 0; R) with R 1 < R < R 2. Proof in book & vivek notes Example/pg 111 (i) find Laurent series expansion ? z . f(z) = ( ) Sol n f(z) = = z+2+ ? z which is Laurent expansion about origin ? z (ii) f(z) = ( ) Sol n f(z) = ( ) is not analytic at 0 & 1 (where f is not defined is singularity) ? f ( z ) = ( z ) = ( z z ) = z z Which is Laurent expansion about origin. ( iii ) f ( z ) z ( z ) w r it e L aur en t series exp an sion ab out z S ol ution f ( z ) z ( z ) ( z ) z ( z ) ( z ) ( z ) , z - ( z ) , ( z ) - ( z ) * ( z ) 3 ( z ) ( z ) + z 3 ( z ) ( z ) f or | z | ( iv ) f in d the L aur en t series e xpan sion of exp ( * ab out z ( or igin ) . Sol n f(z) = e / z ( z * 3 ( z * w hich is L aur en t exp . Que. 7/113 find the Laurent exp. for ( ) z z … a - z - a - z - a - z - ? a z a z a z ? Comes in (ii) comes in (i) Free coaching of B.Sc (h) maths & JAM For more 8130648819 ( ) exp . z / z ab out z ( ) z ab out z ? ( ) ( z ) ?? ( ) ( ) z z z ( z ) f(z) is not analytic at z = 0, z = ± i ? f ( z ) is a na ly ti c f or * z z + ? ( ) z ( z ) z ( z ) z ( z z z ) z z z z ) w hich is L aur en t exp an sion ab out ‘ ’ ( b ) f ( z ) e / z f ( z ) is not an aly ti c at z , ? f(z) i s a nalytic for {z : 0 < |z| <1} f ( z ) e ( z ) 6 z ( z * 7 , z z z - [ ( z z ) ( z z z z * ( z z z z * … … … ] 2 . / . / z . / z . / . / 3 ( 3 * ( z z ) ( 3 * ( z z z ) [ e ? z ( e ) ? z ] { e 3 e 3 … … . } { ? e z ? ( e ) z } ( c ) f ( z ) z ( z ) ( z ) , f ( z ) is not an a ly ti c f or z , ? f ( z ) is a na ly ti c f or * z | z | + f ( z ) ( z ) ( z ) ( z ) . z / ( z ) 4 ( z * 5 ( z ) ( z ) w hich is r eq uir ed L aur en t exp an si on . Self to find Laurent expansion, express the given fun c about the point. Qu e /p g S ho w that if f is a na ly ti c in z an d “ od d ” ( i. e. f ( z ) f ( z ) ) then all the e v en t erm s in it s Laurent expansion about z = 0 are 0 Sol n let f(z) be analytic ? z . L et f ( z ) f ( z ) ? C ( z ) ? C z ? C ( ) z ? C z ( ) C C k Page 4 Free coaching of B.Sc (h) maths & JAM For more 8130648819 Free coaching of B.Sc (h) maths & JAM For more 8130648819 ? let g ( z ) = ? a z …… …… ( ii ) ? R. O. C of eq n (ii) = 1/ lim S up | a | / = 1/R 1 ? g ( z ) conv erg es fo r | z | /R 1 Let f 2(z) = g(1/z) f 2 ( z ) ? a -kz k ? f 2(z) cgs if g(1/z) cgs if | | i.e. if |z| > R 1 ? f 2(z) cgs for |z| > R 1 f(z) = ? a z = f 1(z) + f 2(z) ? ? a z cgs for |z| > R 1 , |z|<R 2 Hence, the Laurent expansion ? a z cgs in the domain D = {z : |z| > R 1 & |z| < R 2} 9.9 theorem : If f is analytic in the annulus A = {z |R 1 < |z| < R 2 +, a nd then f or an y z , f(z) has a representation of the form f(z) = ? a z is called Laurent expansion about origin. Pro of , can see in the b o ok or in V ivek ’s note s Corollary 9.10 If f is analytic in the annulus R 1 | z z 0| < R 2, and then f has a unique representation, f(z) = ? a ( z z ) where a k = ( ) ( ) dz an d C C ( z 0; R) with R 1 < R < R 2. Proof in book & vivek notes Example/pg 111 (i) find Laurent series expansion ? z . f(z) = ( ) Sol n f(z) = = z+2+ ? z which is Laurent expansion about origin ? z (ii) f(z) = ( ) Sol n f(z) = ( ) is not analytic at 0 & 1 (where f is not defined is singularity) ? f ( z ) = ( z ) = ( z z ) = z z Which is Laurent expansion about origin. ( iii ) f ( z ) z ( z ) w r it e L aur en t series exp an sion ab out z S ol ution f ( z ) z ( z ) ( z ) z ( z ) ( z ) ( z ) , z - ( z ) , ( z ) - ( z ) * ( z ) 3 ( z ) ( z ) + z 3 ( z ) ( z ) f or | z | ( iv ) f in d the L aur en t series e xpan sion of exp ( * ab out z ( or igin ) . Sol n f(z) = e / z ( z * 3 ( z * w hich is L aur en t exp . Que. 7/113 find the Laurent exp. for ( ) z z … a - z - a - z - a - z - ? a z a z a z ? Comes in (ii) comes in (i) Free coaching of B.Sc (h) maths & JAM For more 8130648819 ( ) exp . z / z ab out z ( ) z ab out z ? ( ) ( z ) ?? ( ) ( ) z z z ( z ) f(z) is not analytic at z = 0, z = ± i ? f ( z ) is a na ly ti c f or * z z + ? ( ) z ( z ) z ( z ) z ( z z z ) z z z z ) w hich is L aur en t exp an sion ab out ‘ ’ ( b ) f ( z ) e / z f ( z ) is not an aly ti c at z , ? f(z) i s a nalytic for {z : 0 < |z| <1} f ( z ) e ( z ) 6 z ( z * 7 , z z z - [ ( z z ) ( z z z z * ( z z z z * … … … ] 2 . / . / z . / z . / . / 3 ( 3 * ( z z ) ( 3 * ( z z z ) [ e ? z ( e ) ? z ] { e 3 e 3 … … . } { ? e z ? ( e ) z } ( c ) f ( z ) z ( z ) ( z ) , f ( z ) is not an a ly ti c f or z , ? f ( z ) is a na ly ti c f or * z | z | + f ( z ) ( z ) ( z ) ( z ) . z / ( z ) 4 ( z * 5 ( z ) ( z ) w hich is r eq uir ed L aur en t exp an si on . Self to find Laurent expansion, express the given fun c about the point. Qu e /p g S ho w that if f is a na ly ti c in z an d “ od d ” ( i. e. f ( z ) f ( z ) ) then all the e v en t erm s in it s Laurent expansion about z = 0 are 0 Sol n let f(z) be analytic ? z . L et f ( z ) f ( z ) ? C ( z ) ? C z ? C ( ) z ? C z ( ) C C k Free coaching of B.Sc (h) maths & JAM For more 8130648819 Let k = 2n (even) ( ) 2n C 2n C 2n C 2n C 2n = 0 all even terms equal to zero. 9.13 PARTIAL FRACTION DECOMPOSITION OF RATIONAL FRACTION : Any proper rational fun c R ( z ) P ( z ) Q ( z ) P ( z ) ( z z ) ( z z ) … … … ( z z ) Wh ere P Q are p oly nomia l w it h d eg P d eg can be exp an d ed as a sum of p oly nomia l in ( z z ) , k , , … , n F in d the L aur en t series exp an sion f or f ( z ) ( z ) ( z ) f or | z | S oltio n f ( z ) ( z ) ( z ) z . . z / 0 z 1 z ( z * . z / ( | z | | z | * z ( z z * 4 z z 5 z z z z z …Read More
27 docs|150 tests
|
1. What is a Laurent expansion in mathematics? |
2. How is a Laurent expansion different from a Taylor expansion? |
3. What are the applications of Laurent expansions in mathematics? |
4. How can I find the Laurent expansion of a given function? |
5. Can a Laurent expansion be used to approximate any complex function? |
27 docs|150 tests
|
|
Explore Courses for Mathematics exam
|