JEE Exam  >  JEE Notes  >  Mock Tests for JEE Main and Advanced 2025  >  JEE Main 2020 Mathematics January 8 Shift 1 Paper & Solutions

JEE Main 2020 Mathematics January 8 Shift 1 Paper & Solutions | Mock Tests for JEE Main and Advanced 2025 PDF Download

Download, print and study this document offline
Please wait while the PDF view is loading
 Page 1


   
 
    
   
 
   
 
                       
 
 
PAGE # 1 
 
PART : MATHEMATICS 
SECTION – 1  
Straight Objective Type   (lh/ks oLrqfu"B izdkj) 
This section contains 22 multiple choice questions. Each question has 4 choices (1), (2), (3) and (4) for its 
answer, out of which Only One is correct. 
bl [k.M esa 20 cgq&fodYih iz'u gSaA izR;sd iz'u ds 4 fodYi (1), (2), (3) rFkk (4) gSa] ftuesa ls flQZ ,d lgh gSA 
1. Let 
? ?
?
?
3
2
6 3
x sin 1 x sin
dx x cos
= f(x) ? ? c x sin 1
1
6
? ?
?
 then find value of ?
?
?
?
?
? ?
?
3
f 
 ekuk 
? ?
?
?
3
2
6 3
x sin 1 x sin
dx x cos
= f(x) ? ? c x sin 1
1
6
? ?
?
, rks ?
?
?
?
?
? ?
?
3
f dk eku gS& 
 (1) 4   (2) –2   (3)8   (4) –4 
Ans. (2) 
Sol. sin x = t 
 cos x dx = dx 
 I = 
? ?
?
?
3
2
6 3
t 1 t
dt
 =
?
?
?
?
?
?
?
?
3
2
6
7
t
1
1 t
dt
 
Put 
3
6
r
t
1
1 ? ? j[kus ij ?? dr r
2
1
t
dt
2
7
?
?  
?
? ?
2
1
–
r
dr r
2
1
2
2
 r + c = c
x sin
1 x sin
2
1
3
1
6
6
?
?
?
?
?
?
?
?
?
?
? = ? ? c x sin 1
x sin 2
1
3
1
6
2
? ? ? 
 
 f(x) = x ec cos
2
1
2
? and vkSj 3 ? ? 
 ?
?
?
?
?
? ?
?
3
f = – 2 
2. If y(x) is a solution of differential equation 0 y 1
dx
dy
x 1
2 2
? ? ? ? , such that 
2
3
2
1
y ? ?
?
?
?
?
?
, then  
 ;fn y(x), vody lehdj.k 0 y 1
dx
dy
x 1
2 2
? ? ? ? dk gy gS rFkk 
2
3
2
1
y ? ?
?
?
?
?
?
, rc 
 (1) 
2
1
2
1
y ? ?
?
?
?
?
?
?
?
?
  (2) 
2
3
2
1
y ?
?
?
?
?
?
?
?
?
 (3) 
2
1
2
1
y ?
?
?
?
?
?
?
?
?
 (4) 
2
1
2
1
y ? ?
?
?
?
?
?
   
Ans. (3) 
Page 2


   
 
    
   
 
   
 
                       
 
 
PAGE # 1 
 
PART : MATHEMATICS 
SECTION – 1  
Straight Objective Type   (lh/ks oLrqfu"B izdkj) 
This section contains 22 multiple choice questions. Each question has 4 choices (1), (2), (3) and (4) for its 
answer, out of which Only One is correct. 
bl [k.M esa 20 cgq&fodYih iz'u gSaA izR;sd iz'u ds 4 fodYi (1), (2), (3) rFkk (4) gSa] ftuesa ls flQZ ,d lgh gSA 
1. Let 
? ?
?
?
3
2
6 3
x sin 1 x sin
dx x cos
= f(x) ? ? c x sin 1
1
6
? ?
?
 then find value of ?
?
?
?
?
? ?
?
3
f 
 ekuk 
? ?
?
?
3
2
6 3
x sin 1 x sin
dx x cos
= f(x) ? ? c x sin 1
1
6
? ?
?
, rks ?
?
?
?
?
? ?
?
3
f dk eku gS& 
 (1) 4   (2) –2   (3)8   (4) –4 
Ans. (2) 
Sol. sin x = t 
 cos x dx = dx 
 I = 
? ?
?
?
3
2
6 3
t 1 t
dt
 =
?
?
?
?
?
?
?
?
3
2
6
7
t
1
1 t
dt
 
Put 
3
6
r
t
1
1 ? ? j[kus ij ?? dr r
2
1
t
dt
2
7
?
?  
?
? ?
2
1
–
r
dr r
2
1
2
2
 r + c = c
x sin
1 x sin
2
1
3
1
6
6
?
?
?
?
?
?
?
?
?
?
? = ? ? c x sin 1
x sin 2
1
3
1
6
2
? ? ? 
 
 f(x) = x ec cos
2
1
2
? and vkSj 3 ? ? 
 ?
?
?
?
?
? ?
?
3
f = – 2 
2. If y(x) is a solution of differential equation 0 y 1
dx
dy
x 1
2 2
? ? ? ? , such that 
2
3
2
1
y ? ?
?
?
?
?
?
, then  
 ;fn y(x), vody lehdj.k 0 y 1
dx
dy
x 1
2 2
? ? ? ? dk gy gS rFkk 
2
3
2
1
y ? ?
?
?
?
?
?
, rc 
 (1) 
2
1
2
1
y ? ?
?
?
?
?
?
?
?
?
  (2) 
2
3
2
1
y ?
?
?
?
?
?
?
?
?
 (3) 
2
1
2
1
y ?
?
?
?
?
?
?
?
?
 (4) 
2
1
2
1
y ? ?
?
?
?
?
?
   
Ans. (3) 
   
 
    
   
 
   
 
                       
 
 
PAGE # 2 
Sol. 0
x 1
dx
y 1
dy
2 2
?
?
?
?
 ? sin
–1
y + sin
–1
x = c 
 At x = 
2
1
, y = 
2
3
 ? c = 
2
?
 ? sin
–1
y = cos
–1
x  
 Hence  vr% y 
?
?
?
?
?
?
?
?
2
1
 = sin 
2
1
2
1
cos
1
?
?
?
?
?
?
?
?
?
?
 
 
3. 
2
x
1
2
2
0 x
2 x 7
2 x 3
lim
?
?
?
?
?
?
?
?
?
?
?
 is equal to  
 
2
x
1
2
2
0 x
2 x 7
2 x 3
lim
?
?
?
?
?
?
?
?
?
?
?
 dk eku gS& 
 (1) e
–2
   (2) e
2
   (3) e
2/7
   (4) e
3/7
   
Ans. (1) 
Sol. Let L = 
2
x
1
2
2
0 x
2 x 7
2 x 3
lim
?
?
?
?
?
?
?
?
?
?
?
 = 
?
?
?
?
?
?
?
?
?
?
?
?
?
?
1
2 x 7
2 x 3
x
1
lim
2
2
2
0 x
e = 
?
?
?
?
?
?
?
?
?
?
?
?
?
2 x 7
x 4
x
1
lim
2
2
2
0 x
e = 
2
2
4
e e
?
?
? 
 
4. In a bag there are 5 red balls, 3 white balls and 4 black balls. Four balls are drawn from the bag. Find 
the number of ways of in which at most 3 red balls are selected 
,d Fksys esa 5 yky xsansa] 3 lQsn xsansa] vkSj 4 dkyh xsansa gS Fksys ls 4 xsansa fudkyh tkrh gS vf/kd ls vf/kd 3 yky xsansa 
pqus tkus ds Øep;ksa dh la[;k gSA 
 (1) 450    (2) 360   (3) 490   (4) 510 
Ans. (3) 
Sol.    0 Red,  1Red,   2 Red,  3 Red 
 Number of ways Øep;ksa dh la[;k = 
4
7
C +
3
7
1
5
C . C + 
2
7
2
5
C . C +
1
7
3
5
C . C = 35 + 175 + 210 + 70 = 490 
 
5. Let f(x) = {(sin (tan
–1
x) + sin (cot
–1
x)}
2
 –1 where |x| > 1 and ? ? ) x ( f sin
dx
d
2
1
dx
dy
1 ?
? . 
 If ? ?
6
3 y
?
? then ? ? 3 y ? =  
 Ekkuk f(x) = {(sin (tan
–1
x) + sin (cot
–1
x)}
2
 –1 tgk¡ |x| > 1 rFkk ? ? ) x ( f sin
dx
d
2
1
dx
dy
1 ?
? . 
 ;fn ? ?
6
3 y
?
? rc ? ? 3 y ? =  
 
 (1) 
6
5 ?
   (2) 
6
? ?
   (3) 
3
?
   (4) 
3
2 ?
 
Ans. (2) 
Page 3


   
 
    
   
 
   
 
                       
 
 
PAGE # 1 
 
PART : MATHEMATICS 
SECTION – 1  
Straight Objective Type   (lh/ks oLrqfu"B izdkj) 
This section contains 22 multiple choice questions. Each question has 4 choices (1), (2), (3) and (4) for its 
answer, out of which Only One is correct. 
bl [k.M esa 20 cgq&fodYih iz'u gSaA izR;sd iz'u ds 4 fodYi (1), (2), (3) rFkk (4) gSa] ftuesa ls flQZ ,d lgh gSA 
1. Let 
? ?
?
?
3
2
6 3
x sin 1 x sin
dx x cos
= f(x) ? ? c x sin 1
1
6
? ?
?
 then find value of ?
?
?
?
?
? ?
?
3
f 
 ekuk 
? ?
?
?
3
2
6 3
x sin 1 x sin
dx x cos
= f(x) ? ? c x sin 1
1
6
? ?
?
, rks ?
?
?
?
?
? ?
?
3
f dk eku gS& 
 (1) 4   (2) –2   (3)8   (4) –4 
Ans. (2) 
Sol. sin x = t 
 cos x dx = dx 
 I = 
? ?
?
?
3
2
6 3
t 1 t
dt
 =
?
?
?
?
?
?
?
?
3
2
6
7
t
1
1 t
dt
 
Put 
3
6
r
t
1
1 ? ? j[kus ij ?? dr r
2
1
t
dt
2
7
?
?  
?
? ?
2
1
–
r
dr r
2
1
2
2
 r + c = c
x sin
1 x sin
2
1
3
1
6
6
?
?
?
?
?
?
?
?
?
?
? = ? ? c x sin 1
x sin 2
1
3
1
6
2
? ? ? 
 
 f(x) = x ec cos
2
1
2
? and vkSj 3 ? ? 
 ?
?
?
?
?
? ?
?
3
f = – 2 
2. If y(x) is a solution of differential equation 0 y 1
dx
dy
x 1
2 2
? ? ? ? , such that 
2
3
2
1
y ? ?
?
?
?
?
?
, then  
 ;fn y(x), vody lehdj.k 0 y 1
dx
dy
x 1
2 2
? ? ? ? dk gy gS rFkk 
2
3
2
1
y ? ?
?
?
?
?
?
, rc 
 (1) 
2
1
2
1
y ? ?
?
?
?
?
?
?
?
?
  (2) 
2
3
2
1
y ?
?
?
?
?
?
?
?
?
 (3) 
2
1
2
1
y ?
?
?
?
?
?
?
?
?
 (4) 
2
1
2
1
y ? ?
?
?
?
?
?
   
Ans. (3) 
   
 
    
   
 
   
 
                       
 
 
PAGE # 2 
Sol. 0
x 1
dx
y 1
dy
2 2
?
?
?
?
 ? sin
–1
y + sin
–1
x = c 
 At x = 
2
1
, y = 
2
3
 ? c = 
2
?
 ? sin
–1
y = cos
–1
x  
 Hence  vr% y 
?
?
?
?
?
?
?
?
2
1
 = sin 
2
1
2
1
cos
1
?
?
?
?
?
?
?
?
?
?
 
 
3. 
2
x
1
2
2
0 x
2 x 7
2 x 3
lim
?
?
?
?
?
?
?
?
?
?
?
 is equal to  
 
2
x
1
2
2
0 x
2 x 7
2 x 3
lim
?
?
?
?
?
?
?
?
?
?
?
 dk eku gS& 
 (1) e
–2
   (2) e
2
   (3) e
2/7
   (4) e
3/7
   
Ans. (1) 
Sol. Let L = 
2
x
1
2
2
0 x
2 x 7
2 x 3
lim
?
?
?
?
?
?
?
?
?
?
?
 = 
?
?
?
?
?
?
?
?
?
?
?
?
?
?
1
2 x 7
2 x 3
x
1
lim
2
2
2
0 x
e = 
?
?
?
?
?
?
?
?
?
?
?
?
?
2 x 7
x 4
x
1
lim
2
2
2
0 x
e = 
2
2
4
e e
?
?
? 
 
4. In a bag there are 5 red balls, 3 white balls and 4 black balls. Four balls are drawn from the bag. Find 
the number of ways of in which at most 3 red balls are selected 
,d Fksys esa 5 yky xsansa] 3 lQsn xsansa] vkSj 4 dkyh xsansa gS Fksys ls 4 xsansa fudkyh tkrh gS vf/kd ls vf/kd 3 yky xsansa 
pqus tkus ds Øep;ksa dh la[;k gSA 
 (1) 450    (2) 360   (3) 490   (4) 510 
Ans. (3) 
Sol.    0 Red,  1Red,   2 Red,  3 Red 
 Number of ways Øep;ksa dh la[;k = 
4
7
C +
3
7
1
5
C . C + 
2
7
2
5
C . C +
1
7
3
5
C . C = 35 + 175 + 210 + 70 = 490 
 
5. Let f(x) = {(sin (tan
–1
x) + sin (cot
–1
x)}
2
 –1 where |x| > 1 and ? ? ) x ( f sin
dx
d
2
1
dx
dy
1 ?
? . 
 If ? ?
6
3 y
?
? then ? ? 3 y ? =  
 Ekkuk f(x) = {(sin (tan
–1
x) + sin (cot
–1
x)}
2
 –1 tgk¡ |x| > 1 rFkk ? ? ) x ( f sin
dx
d
2
1
dx
dy
1 ?
? . 
 ;fn ? ?
6
3 y
?
? rc ? ? 3 y ? =  
 
 (1) 
6
5 ?
   (2) 
6
? ?
   (3) 
3
?
   (4) 
3
2 ?
 
Ans. (2) 
   
 
    
   
 
   
 
                       
 
 
PAGE # 3 
Sol. 2y = sin
–1
f(x) + C = sin
–1
(sin(2tan
–1
x)) + C  ?  C
3
2
sin sin
6
2
1
?
?
?
?
?
?
?
?
?
?
?
?
?
?
? ?
? ?
?
?
?
?
? ?
?
 
 ?
?
?
?
3 3
C ?  C = 0 
 for 3 – x ? , 2y = sin
–1
?
?
?
?
?
?
?
?
?
?
?
?
?
? ? ?
6
2
sin + 0 ?? ? 2y = 
3
? ?
 
 ?
?
?
?
?
? ? ?
?
6
y 
 
6. If 2
1 –x
  + 2
1+x
, f(x), 3
x
 + 3
–x
 are in A.P. then minimum value of f(x) is 
 ;fn 2
1 –x
  + 2
1+x
, f(x), 3
x
 + 3
–x
 lekUrj Js.kh esa gS rc f(x) dk U;wure eku gS& 
 (1) 1   (2) 2   (3) 3  (4) 4 
Ans. (3) 
Sol. f(x) = 
?
?
?
?
?
?
?
?
? ? ?
? ? ?
2
3 3 2 2
x x x 1 x 1
 
 Using AM ? GM 
 f(x) ? 3 
 
7. Which of the following is tautology 
 fuEu esa ls dkSulh iqu%#fDr gS \ 
 (1) (p ? (p ? q)) ? q    (2) q ? p ? (p ? q) 
 (3) p v (p ? q)     (4) (p ? (p ? q) 
Ans. (1) 
Sol.  
p q p ? q p ? (p ? q) (p ?(p ?q)) ? q q ? p ?(p ?q)  p ? q p ? (p ?q )  p ? q p ? (p ? q) 
T T T T T T T T T T 
T F F F T T F T T T 
F T T F T F F F T F 
F F T F T T F F F F 
 
8. A is a 3 × 3 matrix whose elements are from the set { –1, 0, 1}. Find the number of matrices A such that 
tr(AA
T
) = 3.  Where tr(A) is sum of diagonal elements of matrix A.  
 A ,d 3 × 3 Øe dk vkO;wg gS] ftlds vo;o leqPp; { –1, 0, 1} ls fy, x;s gSA rc vkO;wg A dh la[;k Kkr djks 
tks bl izdkj gS fd tr(AA
T
) = 3 tgk¡ tr(A) vkO;wg A ds fod.kZ ds vo;oksa dk ;ksx gSA 
 (1) 572    (2) 612   (3) 672   (4) 682 
Ans. (3) 
Read More
357 docs|148 tests
Related Searches

Free

,

ppt

,

shortcuts and tricks

,

Important questions

,

practice quizzes

,

pdf

,

MCQs

,

JEE Main 2020 Mathematics January 8 Shift 1 Paper & Solutions | Mock Tests for JEE Main and Advanced 2025

,

Previous Year Questions with Solutions

,

past year papers

,

JEE Main 2020 Mathematics January 8 Shift 1 Paper & Solutions | Mock Tests for JEE Main and Advanced 2025

,

video lectures

,

Viva Questions

,

mock tests for examination

,

Semester Notes

,

Extra Questions

,

Sample Paper

,

JEE Main 2020 Mathematics January 8 Shift 1 Paper & Solutions | Mock Tests for JEE Main and Advanced 2025

,

study material

,

Summary

,

Exam

,

Objective type Questions

;