JEE Exam  >  JEE Notes  >  Mock Tests for JEE Main and Advanced 2025  >  JEE Main 2020 Mathematics January 8 Shift 2 Paper & Solutions

JEE Main 2020 Mathematics January 8 Shift 2 Paper & Solutions | Mock Tests for JEE Main and Advanced 2025 PDF Download

Download, print and study this document offline
Please wait while the PDF view is loading
 Page 1


   
 
    
   
 
   
 
                       
 
 
 
PART : MATHEMATICS 
 
SECTION – 1  
Straight Objective Type   (lh/ks oLrqfu"B izdkj) 
This section contains 21 multiple choice questions. Each question has 4 choices (1), (2), (3) and (4) for its 
answer, out of which Only One is correct. 
bl [k.M esa 21 cgq&fodYih iz'u gSaA izR;sd iz'u ds 4 fodYi (1), (2), (3) rFkk (4) gSa] ftuesa ls flQZ ,d lgh gSA 
 
1. Let a
?
 = k
ˆ
j
ˆ
2 i
ˆ
? ? , b
?
 = k
ˆ
j
ˆ
i
ˆ
? ? and c
?
 is nonzero vector and c b
?
?
? = a b
?
?
? , c . a
? ?
 = 0 find c . b
?
?
  
 ekuk a
?
 = k
ˆ
j
ˆ
2 i
ˆ
? ? , b
?
 = k
ˆ
j
ˆ
i
ˆ
? ? rFkk c
?
 ,d v'kwU; lfn'k gS rFkk c b
?
?
? = a b
?
?
? , c . a
? ?
 = 0 rks c . b
?
?
dk eku 
gksxk% 
 (1) 
2
1
    (2) 
3
1
   (3) 
2
1
?   (4) 
3
1
? 
Ans. (3)  
Sol. ) c b ( a
?
?
?
? ? = ) a b ( a
?
?
?
? ?  
– ) b . a (
?
?
c
?
 = ( a
?
. a
?
) b
?
 – ( b . a
?
?
) a
?
 
– c 4
?
 = 6( k
ˆ
j
ˆ
i
ˆ
? ? ) – 4( k
ˆ
j
ˆ
2 i
ˆ
? ? ) 
– c 4
?
 = k
ˆ
2 j
ˆ
2 i
ˆ
2 ? ? 
c
?
 = 
2
1
? ( k
ˆ
j
ˆ
i
ˆ
? ? ) 
c . b
?
?
 = 
2
1
?     
 
2. Let coefficient of x
4
 and x
2
 in the expansion of 
6
2
6
2
1 x x 1 x x
?
?
?
?
?
?
? ? ?
?
?
?
?
?
?
? ? is ? and ? then ? – ? is 
equal to   
 ekuk 
6
2
6
2
1 x x 1 x x
?
?
?
?
?
?
? ? ?
?
?
?
?
?
?
? ? ds izlkj esa x
4 
rFkk  x
2 
ds xq.kkad Øe'k%  ? rFkk ? gS rks ? – ? dk eku gS %  
 (1) 48   (2) 60   (3) –132  (4) –60   
Ans. (3) 
 2[
6
C0 x
6
 + 
6
C2 x
4
 (x
2 
– 1) + 
6
C4 x
2
 (x
2 
– 1)
2
 + 
6
C6 (x
2 
– 1)
3
] 
 = 2[x
6
 + 15(x
6
 – x
4
) + 15x
2
(x
4
 – 2x
2
 + 1) + (–1 + 3x
2
 – 3x
4
 + x
6
)] 
 = 2(32x
6
 – 48x
4
 + 18x
2
 – 1) 
? ? = – 96 and vkSj ? = 36 ? ? ? – ? = –132  
 
Page 2


   
 
    
   
 
   
 
                       
 
 
 
PART : MATHEMATICS 
 
SECTION – 1  
Straight Objective Type   (lh/ks oLrqfu"B izdkj) 
This section contains 21 multiple choice questions. Each question has 4 choices (1), (2), (3) and (4) for its 
answer, out of which Only One is correct. 
bl [k.M esa 21 cgq&fodYih iz'u gSaA izR;sd iz'u ds 4 fodYi (1), (2), (3) rFkk (4) gSa] ftuesa ls flQZ ,d lgh gSA 
 
1. Let a
?
 = k
ˆ
j
ˆ
2 i
ˆ
? ? , b
?
 = k
ˆ
j
ˆ
i
ˆ
? ? and c
?
 is nonzero vector and c b
?
?
? = a b
?
?
? , c . a
? ?
 = 0 find c . b
?
?
  
 ekuk a
?
 = k
ˆ
j
ˆ
2 i
ˆ
? ? , b
?
 = k
ˆ
j
ˆ
i
ˆ
? ? rFkk c
?
 ,d v'kwU; lfn'k gS rFkk c b
?
?
? = a b
?
?
? , c . a
? ?
 = 0 rks c . b
?
?
dk eku 
gksxk% 
 (1) 
2
1
    (2) 
3
1
   (3) 
2
1
?   (4) 
3
1
? 
Ans. (3)  
Sol. ) c b ( a
?
?
?
? ? = ) a b ( a
?
?
?
? ?  
– ) b . a (
?
?
c
?
 = ( a
?
. a
?
) b
?
 – ( b . a
?
?
) a
?
 
– c 4
?
 = 6( k
ˆ
j
ˆ
i
ˆ
? ? ) – 4( k
ˆ
j
ˆ
2 i
ˆ
? ? ) 
– c 4
?
 = k
ˆ
2 j
ˆ
2 i
ˆ
2 ? ? 
c
?
 = 
2
1
? ( k
ˆ
j
ˆ
i
ˆ
? ? ) 
c . b
?
?
 = 
2
1
?     
 
2. Let coefficient of x
4
 and x
2
 in the expansion of 
6
2
6
2
1 x x 1 x x
?
?
?
?
?
?
? ? ?
?
?
?
?
?
?
? ? is ? and ? then ? – ? is 
equal to   
 ekuk 
6
2
6
2
1 x x 1 x x
?
?
?
?
?
?
? ? ?
?
?
?
?
?
?
? ? ds izlkj esa x
4 
rFkk  x
2 
ds xq.kkad Øe'k%  ? rFkk ? gS rks ? – ? dk eku gS %  
 (1) 48   (2) 60   (3) –132  (4) –60   
Ans. (3) 
 2[
6
C0 x
6
 + 
6
C2 x
4
 (x
2 
– 1) + 
6
C4 x
2
 (x
2 
– 1)
2
 + 
6
C6 (x
2 
– 1)
3
] 
 = 2[x
6
 + 15(x
6
 – x
4
) + 15x
2
(x
4
 – 2x
2
 + 1) + (–1 + 3x
2
 – 3x
4
 + x
6
)] 
 = 2(32x
6
 – 48x
4
 + 18x
2
 – 1) 
? ? = – 96 and vkSj ? = 36 ? ? ? – ? = –132  
 
   
 
    
   
 
   
 
                       
 
 
3. Differential equation of x
2
= 4b(y + b), where b is a parameter, is 
 x
2
= 4b(y + b), tgk¡ b ,d izkpy gS] dk vody lehdj.k gksxk %
 
 (1) 
2
2
x
dx
dy
y 2
dx
dy
x ? ? ?
?
?
?
?
?
   (2) x
dx
dy
y 2
dx
dy
x
2
? ? ?
?
?
?
?
?
 
 (3) 
2
2
x
dx
dy
y
dx
dy
x ? ? ?
?
?
?
?
?
    (4) 
2
2
x 2
dx
dy
y
dx
dy
x ? ? ?
?
?
?
?
?
 
Ans. (2)  
Sol. 2x = 4by
'  
? ?
'
y 2
x
b ? 
 So. differential equation is 
2
' '
2
y
x
y .
y
x 2
x
?
?
?
?
?
?
?
?
? ? 
 vr% vody lehdj.k 
2
' '
2
y
x
y .
y
x 2
x
?
?
?
?
?
?
?
?
? ? ? ? x
dx
dy
y 2
dx
dy
x
2
? ? ?
?
?
?
?
?
 
 
4. Image of (1, 2, 3) w.r.t a plane is ?
?
?
?
?
?
3
1 –
,
3
4 –
,
3
7 –
 then which of the following points lie on the plane 
  (1, 2, 3) dk fdlh lery esa izfrfcEc ?
?
?
?
?
?
3
1 –
,
3
4 –
,
3
7 –
 rks fuEu esa ls dkSulk fcUnq lery ij fLFkr ugha gS %
 
 (1) (–1, 1,–1)  (2) (–1, –1, –1)  (3) (–1, –1,1)  (4) (1, 1, –1) 
Ans. (4)  
Sol. d.r of normal to the plane 
 lery ds yEcor~ f}dvuqikr 
 
3
10
,
3
10
,
3
10
 
   1,   1,    1 
 midpoint of P and Q is ?
?
?
?
?
?
3
4
,
3
1
,
3
2 –
 
 P rFkk Q dk e/; fcUnq ?
?
?
?
?
?
3
4
,
3
1
,
3
2 –
 
 equation of plane x + y + z = 1 
 lery dk lehdj.k x + y + z = 1  
  
5. 
0 x
lim
? x
dt ) t 10 sin( t
x
0
?
 is equal to  
 
0 x
lim
? x
dt ) t 10 sin( t
x
0
?
 dk eku gS %  
 
 (1) 1   (2) 10   (3) 5   (4) 0  
Page 3


   
 
    
   
 
   
 
                       
 
 
 
PART : MATHEMATICS 
 
SECTION – 1  
Straight Objective Type   (lh/ks oLrqfu"B izdkj) 
This section contains 21 multiple choice questions. Each question has 4 choices (1), (2), (3) and (4) for its 
answer, out of which Only One is correct. 
bl [k.M esa 21 cgq&fodYih iz'u gSaA izR;sd iz'u ds 4 fodYi (1), (2), (3) rFkk (4) gSa] ftuesa ls flQZ ,d lgh gSA 
 
1. Let a
?
 = k
ˆ
j
ˆ
2 i
ˆ
? ? , b
?
 = k
ˆ
j
ˆ
i
ˆ
? ? and c
?
 is nonzero vector and c b
?
?
? = a b
?
?
? , c . a
? ?
 = 0 find c . b
?
?
  
 ekuk a
?
 = k
ˆ
j
ˆ
2 i
ˆ
? ? , b
?
 = k
ˆ
j
ˆ
i
ˆ
? ? rFkk c
?
 ,d v'kwU; lfn'k gS rFkk c b
?
?
? = a b
?
?
? , c . a
? ?
 = 0 rks c . b
?
?
dk eku 
gksxk% 
 (1) 
2
1
    (2) 
3
1
   (3) 
2
1
?   (4) 
3
1
? 
Ans. (3)  
Sol. ) c b ( a
?
?
?
? ? = ) a b ( a
?
?
?
? ?  
– ) b . a (
?
?
c
?
 = ( a
?
. a
?
) b
?
 – ( b . a
?
?
) a
?
 
– c 4
?
 = 6( k
ˆ
j
ˆ
i
ˆ
? ? ) – 4( k
ˆ
j
ˆ
2 i
ˆ
? ? ) 
– c 4
?
 = k
ˆ
2 j
ˆ
2 i
ˆ
2 ? ? 
c
?
 = 
2
1
? ( k
ˆ
j
ˆ
i
ˆ
? ? ) 
c . b
?
?
 = 
2
1
?     
 
2. Let coefficient of x
4
 and x
2
 in the expansion of 
6
2
6
2
1 x x 1 x x
?
?
?
?
?
?
? ? ?
?
?
?
?
?
?
? ? is ? and ? then ? – ? is 
equal to   
 ekuk 
6
2
6
2
1 x x 1 x x
?
?
?
?
?
?
? ? ?
?
?
?
?
?
?
? ? ds izlkj esa x
4 
rFkk  x
2 
ds xq.kkad Øe'k%  ? rFkk ? gS rks ? – ? dk eku gS %  
 (1) 48   (2) 60   (3) –132  (4) –60   
Ans. (3) 
 2[
6
C0 x
6
 + 
6
C2 x
4
 (x
2 
– 1) + 
6
C4 x
2
 (x
2 
– 1)
2
 + 
6
C6 (x
2 
– 1)
3
] 
 = 2[x
6
 + 15(x
6
 – x
4
) + 15x
2
(x
4
 – 2x
2
 + 1) + (–1 + 3x
2
 – 3x
4
 + x
6
)] 
 = 2(32x
6
 – 48x
4
 + 18x
2
 – 1) 
? ? = – 96 and vkSj ? = 36 ? ? ? – ? = –132  
 
   
 
    
   
 
   
 
                       
 
 
3. Differential equation of x
2
= 4b(y + b), where b is a parameter, is 
 x
2
= 4b(y + b), tgk¡ b ,d izkpy gS] dk vody lehdj.k gksxk %
 
 (1) 
2
2
x
dx
dy
y 2
dx
dy
x ? ? ?
?
?
?
?
?
   (2) x
dx
dy
y 2
dx
dy
x
2
? ? ?
?
?
?
?
?
 
 (3) 
2
2
x
dx
dy
y
dx
dy
x ? ? ?
?
?
?
?
?
    (4) 
2
2
x 2
dx
dy
y
dx
dy
x ? ? ?
?
?
?
?
?
 
Ans. (2)  
Sol. 2x = 4by
'  
? ?
'
y 2
x
b ? 
 So. differential equation is 
2
' '
2
y
x
y .
y
x 2
x
?
?
?
?
?
?
?
?
? ? 
 vr% vody lehdj.k 
2
' '
2
y
x
y .
y
x 2
x
?
?
?
?
?
?
?
?
? ? ? ? x
dx
dy
y 2
dx
dy
x
2
? ? ?
?
?
?
?
?
 
 
4. Image of (1, 2, 3) w.r.t a plane is ?
?
?
?
?
?
3
1 –
,
3
4 –
,
3
7 –
 then which of the following points lie on the plane 
  (1, 2, 3) dk fdlh lery esa izfrfcEc ?
?
?
?
?
?
3
1 –
,
3
4 –
,
3
7 –
 rks fuEu esa ls dkSulk fcUnq lery ij fLFkr ugha gS %
 
 (1) (–1, 1,–1)  (2) (–1, –1, –1)  (3) (–1, –1,1)  (4) (1, 1, –1) 
Ans. (4)  
Sol. d.r of normal to the plane 
 lery ds yEcor~ f}dvuqikr 
 
3
10
,
3
10
,
3
10
 
   1,   1,    1 
 midpoint of P and Q is ?
?
?
?
?
?
3
4
,
3
1
,
3
2 –
 
 P rFkk Q dk e/; fcUnq ?
?
?
?
?
?
3
4
,
3
1
,
3
2 –
 
 equation of plane x + y + z = 1 
 lery dk lehdj.k x + y + z = 1  
  
5. 
0 x
lim
? x
dt ) t 10 sin( t
x
0
?
 is equal to  
 
0 x
lim
? x
dt ) t 10 sin( t
x
0
?
 dk eku gS %  
 
 (1) 1   (2) 10   (3) 5   (4) 0  
   
 
    
   
 
   
 
                       
 
 
Ans. (4)  
Sol. Using L’Hospital 
 L gkWfLiVy ls  
 
0 x
lim
? 1
) x 0 1 sin( x
 = 0 
 
6. Let P be the set of points (x, y) such that x
2
 ? y ? – 2x + 3. Then area of region bounded by points in set 
P is 
 ekuk P fcUnqvksa (x, y) dk leqPp; bl izdkj gS fd x
2
 ? y ? – 2x + 3.  rks P ds lHkh fcUnqvksa }kjk lEc) {ks=kQy 
gksxk% 
 (1) 
3
16
   (2) 
3
32
   (3) 
3
29
   (4) 
3
20
 
Ans. (2) 
Sol. Point of intersection of y = x
2
 & y = – 2x + 3 is 
 y = x
2
 rFkk y = – 2x + 3 dk izfrPNsnu fcUnq 
 obtained by izkIr gksrk gS] x
2
 + 2x – 3 = 0 
 ? x = – 3, 1 
 So, Area  vr% {ks=kQy =
?
?
? ?
1
3
2
dx ) x x 2 3 ( = 3(4) – 2
?
?
?
?
?
?
?
?
?
2
3 1
2 2
– 
?
?
?
?
?
?
?
?
?
3
3 1
3 3
  = 12 + 8 – 
3
28
 = 
3
32
 
  
 
–3 1 
 
  
7. Let f(x) = 
? ?
1 x
x x
2
?
 : (1, 3) ? R then range of f(x) is (where [ . ] denotes greatest integer function)  
 ekuk f(x) = 
? ?
1 x
x x
2
?
 : (1, 3) ? R rks f(x) dk ifjlj gS (tgk¡ [ . ] egÙke iw.kkZad Qyu gS)  
 (1) ?
?
?
?
?
?
2
1
, 0 ?  
?
?
?
?
?
?
5
7
,
5
3
   (2) ?
?
?
?
?
?
2
1
,
5
2
?  
?
?
?
?
?
?
5
4
,
5
3
 
 (3) ?
?
?
?
?
?
1 ,
5
2
?  
?
?
?
?
?
?
5
4
, 1   (4) ?
?
?
?
?
?
3
1
, 0 ?  
?
?
?
?
?
?
5
4
,
5
2
 
Ans. (2) 
Page 4


   
 
    
   
 
   
 
                       
 
 
 
PART : MATHEMATICS 
 
SECTION – 1  
Straight Objective Type   (lh/ks oLrqfu"B izdkj) 
This section contains 21 multiple choice questions. Each question has 4 choices (1), (2), (3) and (4) for its 
answer, out of which Only One is correct. 
bl [k.M esa 21 cgq&fodYih iz'u gSaA izR;sd iz'u ds 4 fodYi (1), (2), (3) rFkk (4) gSa] ftuesa ls flQZ ,d lgh gSA 
 
1. Let a
?
 = k
ˆ
j
ˆ
2 i
ˆ
? ? , b
?
 = k
ˆ
j
ˆ
i
ˆ
? ? and c
?
 is nonzero vector and c b
?
?
? = a b
?
?
? , c . a
? ?
 = 0 find c . b
?
?
  
 ekuk a
?
 = k
ˆ
j
ˆ
2 i
ˆ
? ? , b
?
 = k
ˆ
j
ˆ
i
ˆ
? ? rFkk c
?
 ,d v'kwU; lfn'k gS rFkk c b
?
?
? = a b
?
?
? , c . a
? ?
 = 0 rks c . b
?
?
dk eku 
gksxk% 
 (1) 
2
1
    (2) 
3
1
   (3) 
2
1
?   (4) 
3
1
? 
Ans. (3)  
Sol. ) c b ( a
?
?
?
? ? = ) a b ( a
?
?
?
? ?  
– ) b . a (
?
?
c
?
 = ( a
?
. a
?
) b
?
 – ( b . a
?
?
) a
?
 
– c 4
?
 = 6( k
ˆ
j
ˆ
i
ˆ
? ? ) – 4( k
ˆ
j
ˆ
2 i
ˆ
? ? ) 
– c 4
?
 = k
ˆ
2 j
ˆ
2 i
ˆ
2 ? ? 
c
?
 = 
2
1
? ( k
ˆ
j
ˆ
i
ˆ
? ? ) 
c . b
?
?
 = 
2
1
?     
 
2. Let coefficient of x
4
 and x
2
 in the expansion of 
6
2
6
2
1 x x 1 x x
?
?
?
?
?
?
? ? ?
?
?
?
?
?
?
? ? is ? and ? then ? – ? is 
equal to   
 ekuk 
6
2
6
2
1 x x 1 x x
?
?
?
?
?
?
? ? ?
?
?
?
?
?
?
? ? ds izlkj esa x
4 
rFkk  x
2 
ds xq.kkad Øe'k%  ? rFkk ? gS rks ? – ? dk eku gS %  
 (1) 48   (2) 60   (3) –132  (4) –60   
Ans. (3) 
 2[
6
C0 x
6
 + 
6
C2 x
4
 (x
2 
– 1) + 
6
C4 x
2
 (x
2 
– 1)
2
 + 
6
C6 (x
2 
– 1)
3
] 
 = 2[x
6
 + 15(x
6
 – x
4
) + 15x
2
(x
4
 – 2x
2
 + 1) + (–1 + 3x
2
 – 3x
4
 + x
6
)] 
 = 2(32x
6
 – 48x
4
 + 18x
2
 – 1) 
? ? = – 96 and vkSj ? = 36 ? ? ? – ? = –132  
 
   
 
    
   
 
   
 
                       
 
 
3. Differential equation of x
2
= 4b(y + b), where b is a parameter, is 
 x
2
= 4b(y + b), tgk¡ b ,d izkpy gS] dk vody lehdj.k gksxk %
 
 (1) 
2
2
x
dx
dy
y 2
dx
dy
x ? ? ?
?
?
?
?
?
   (2) x
dx
dy
y 2
dx
dy
x
2
? ? ?
?
?
?
?
?
 
 (3) 
2
2
x
dx
dy
y
dx
dy
x ? ? ?
?
?
?
?
?
    (4) 
2
2
x 2
dx
dy
y
dx
dy
x ? ? ?
?
?
?
?
?
 
Ans. (2)  
Sol. 2x = 4by
'  
? ?
'
y 2
x
b ? 
 So. differential equation is 
2
' '
2
y
x
y .
y
x 2
x
?
?
?
?
?
?
?
?
? ? 
 vr% vody lehdj.k 
2
' '
2
y
x
y .
y
x 2
x
?
?
?
?
?
?
?
?
? ? ? ? x
dx
dy
y 2
dx
dy
x
2
? ? ?
?
?
?
?
?
 
 
4. Image of (1, 2, 3) w.r.t a plane is ?
?
?
?
?
?
3
1 –
,
3
4 –
,
3
7 –
 then which of the following points lie on the plane 
  (1, 2, 3) dk fdlh lery esa izfrfcEc ?
?
?
?
?
?
3
1 –
,
3
4 –
,
3
7 –
 rks fuEu esa ls dkSulk fcUnq lery ij fLFkr ugha gS %
 
 (1) (–1, 1,–1)  (2) (–1, –1, –1)  (3) (–1, –1,1)  (4) (1, 1, –1) 
Ans. (4)  
Sol. d.r of normal to the plane 
 lery ds yEcor~ f}dvuqikr 
 
3
10
,
3
10
,
3
10
 
   1,   1,    1 
 midpoint of P and Q is ?
?
?
?
?
?
3
4
,
3
1
,
3
2 –
 
 P rFkk Q dk e/; fcUnq ?
?
?
?
?
?
3
4
,
3
1
,
3
2 –
 
 equation of plane x + y + z = 1 
 lery dk lehdj.k x + y + z = 1  
  
5. 
0 x
lim
? x
dt ) t 10 sin( t
x
0
?
 is equal to  
 
0 x
lim
? x
dt ) t 10 sin( t
x
0
?
 dk eku gS %  
 
 (1) 1   (2) 10   (3) 5   (4) 0  
   
 
    
   
 
   
 
                       
 
 
Ans. (4)  
Sol. Using L’Hospital 
 L gkWfLiVy ls  
 
0 x
lim
? 1
) x 0 1 sin( x
 = 0 
 
6. Let P be the set of points (x, y) such that x
2
 ? y ? – 2x + 3. Then area of region bounded by points in set 
P is 
 ekuk P fcUnqvksa (x, y) dk leqPp; bl izdkj gS fd x
2
 ? y ? – 2x + 3.  rks P ds lHkh fcUnqvksa }kjk lEc) {ks=kQy 
gksxk% 
 (1) 
3
16
   (2) 
3
32
   (3) 
3
29
   (4) 
3
20
 
Ans. (2) 
Sol. Point of intersection of y = x
2
 & y = – 2x + 3 is 
 y = x
2
 rFkk y = – 2x + 3 dk izfrPNsnu fcUnq 
 obtained by izkIr gksrk gS] x
2
 + 2x – 3 = 0 
 ? x = – 3, 1 
 So, Area  vr% {ks=kQy =
?
?
? ?
1
3
2
dx ) x x 2 3 ( = 3(4) – 2
?
?
?
?
?
?
?
?
?
2
3 1
2 2
– 
?
?
?
?
?
?
?
?
?
3
3 1
3 3
  = 12 + 8 – 
3
28
 = 
3
32
 
  
 
–3 1 
 
  
7. Let f(x) = 
? ?
1 x
x x
2
?
 : (1, 3) ? R then range of f(x) is (where [ . ] denotes greatest integer function)  
 ekuk f(x) = 
? ?
1 x
x x
2
?
 : (1, 3) ? R rks f(x) dk ifjlj gS (tgk¡ [ . ] egÙke iw.kkZad Qyu gS)  
 (1) ?
?
?
?
?
?
2
1
, 0 ?  
?
?
?
?
?
?
5
7
,
5
3
   (2) ?
?
?
?
?
?
2
1
,
5
2
?  
?
?
?
?
?
?
5
4
,
5
3
 
 (3) ?
?
?
?
?
?
1 ,
5
2
?  
?
?
?
?
?
?
5
4
, 1   (4) ?
?
?
?
?
?
3
1
, 0 ?  
?
?
?
?
?
?
5
4
,
5
2
 
Ans. (2) 
   
 
    
   
 
   
 
                       
 
 
Sol f(x) 
?
?
?
?
?
?
?
?
?
?
?
) 3 , 2 [ x ;
1 x
x 2
) 2 , 1 ( x ;
1 x
x
2
2
 
 ? f(x) is a decreasing function 
 ? f(x) âkleku Qyu gSA 
 ? y ? ?
?
?
?
?
?
2
1
,
5
2
?  
?
?
?
?
?
?
5
4
,
10
6
 
 ? y ? ?
?
?
?
?
?
2
1
,
5
2
?  
?
?
?
?
?
?
5
4
,
5
3
 
 
8. Let A = 
?
?
?
?
?
?
4 9
2 2
 and I = 
?
?
?
?
?
?
1 0
0 1
  then value of 10 A
–1
 is – 
 ekuk A = 
?
?
?
?
?
?
4 9
2 2
 rFkk I = 
?
?
?
?
?
?
1 0
0 1
  rks 10 A
–1
 dk eku gksxk %  
 (1) 4I – A  (2) 6 I – A  (3) A – 4 I  (4) A – 6 I 
Ans. (4) 
Sol. Characteristics equation of matrix ‘A’ is  
 vkO;wg ‘A’ dh vfHkyk{kf.kd lehdj.k gS & 
 0
x – 4 9
2 x – 2
? ? ? x
2
 – 6x – 10 = 0 
 ? A
2
 – 6A – 10 I = 0 
 ? ? 10A
–1
 = A – 6I 
 
9. Solution set of 3
x
(3
x
 –1) + 2 = |3
x
 –1| + |3
x
 – 2| contains  
(1) singleton set     (2) two elements  
(3) at least four elements   (4) infinite elements 
3
x
(3
x
 –1) + 2 = |3
x
 –1| + |3
x
 – 2| dk gy leqPPk; j[krk gSA 
(1) ,d gy   (2) nks gy  (3) de ls de pkj gy (4) vUur gy 
Ans. (1) 
Sol. Let 3
x
 = t 
 t(t –1) + 2 = |t –1| + |t –2| 
 t
2
 – t + 2 = |t –1| + |t –2| 
 
 
7/4 
2
1
 
a 1 2 
 
 are positive solution 
 t = a 
 3
x
 = a 
 x = a log
3
 so singleton set 
Page 5


   
 
    
   
 
   
 
                       
 
 
 
PART : MATHEMATICS 
 
SECTION – 1  
Straight Objective Type   (lh/ks oLrqfu"B izdkj) 
This section contains 21 multiple choice questions. Each question has 4 choices (1), (2), (3) and (4) for its 
answer, out of which Only One is correct. 
bl [k.M esa 21 cgq&fodYih iz'u gSaA izR;sd iz'u ds 4 fodYi (1), (2), (3) rFkk (4) gSa] ftuesa ls flQZ ,d lgh gSA 
 
1. Let a
?
 = k
ˆ
j
ˆ
2 i
ˆ
? ? , b
?
 = k
ˆ
j
ˆ
i
ˆ
? ? and c
?
 is nonzero vector and c b
?
?
? = a b
?
?
? , c . a
? ?
 = 0 find c . b
?
?
  
 ekuk a
?
 = k
ˆ
j
ˆ
2 i
ˆ
? ? , b
?
 = k
ˆ
j
ˆ
i
ˆ
? ? rFkk c
?
 ,d v'kwU; lfn'k gS rFkk c b
?
?
? = a b
?
?
? , c . a
? ?
 = 0 rks c . b
?
?
dk eku 
gksxk% 
 (1) 
2
1
    (2) 
3
1
   (3) 
2
1
?   (4) 
3
1
? 
Ans. (3)  
Sol. ) c b ( a
?
?
?
? ? = ) a b ( a
?
?
?
? ?  
– ) b . a (
?
?
c
?
 = ( a
?
. a
?
) b
?
 – ( b . a
?
?
) a
?
 
– c 4
?
 = 6( k
ˆ
j
ˆ
i
ˆ
? ? ) – 4( k
ˆ
j
ˆ
2 i
ˆ
? ? ) 
– c 4
?
 = k
ˆ
2 j
ˆ
2 i
ˆ
2 ? ? 
c
?
 = 
2
1
? ( k
ˆ
j
ˆ
i
ˆ
? ? ) 
c . b
?
?
 = 
2
1
?     
 
2. Let coefficient of x
4
 and x
2
 in the expansion of 
6
2
6
2
1 x x 1 x x
?
?
?
?
?
?
? ? ?
?
?
?
?
?
?
? ? is ? and ? then ? – ? is 
equal to   
 ekuk 
6
2
6
2
1 x x 1 x x
?
?
?
?
?
?
? ? ?
?
?
?
?
?
?
? ? ds izlkj esa x
4 
rFkk  x
2 
ds xq.kkad Øe'k%  ? rFkk ? gS rks ? – ? dk eku gS %  
 (1) 48   (2) 60   (3) –132  (4) –60   
Ans. (3) 
 2[
6
C0 x
6
 + 
6
C2 x
4
 (x
2 
– 1) + 
6
C4 x
2
 (x
2 
– 1)
2
 + 
6
C6 (x
2 
– 1)
3
] 
 = 2[x
6
 + 15(x
6
 – x
4
) + 15x
2
(x
4
 – 2x
2
 + 1) + (–1 + 3x
2
 – 3x
4
 + x
6
)] 
 = 2(32x
6
 – 48x
4
 + 18x
2
 – 1) 
? ? = – 96 and vkSj ? = 36 ? ? ? – ? = –132  
 
   
 
    
   
 
   
 
                       
 
 
3. Differential equation of x
2
= 4b(y + b), where b is a parameter, is 
 x
2
= 4b(y + b), tgk¡ b ,d izkpy gS] dk vody lehdj.k gksxk %
 
 (1) 
2
2
x
dx
dy
y 2
dx
dy
x ? ? ?
?
?
?
?
?
   (2) x
dx
dy
y 2
dx
dy
x
2
? ? ?
?
?
?
?
?
 
 (3) 
2
2
x
dx
dy
y
dx
dy
x ? ? ?
?
?
?
?
?
    (4) 
2
2
x 2
dx
dy
y
dx
dy
x ? ? ?
?
?
?
?
?
 
Ans. (2)  
Sol. 2x = 4by
'  
? ?
'
y 2
x
b ? 
 So. differential equation is 
2
' '
2
y
x
y .
y
x 2
x
?
?
?
?
?
?
?
?
? ? 
 vr% vody lehdj.k 
2
' '
2
y
x
y .
y
x 2
x
?
?
?
?
?
?
?
?
? ? ? ? x
dx
dy
y 2
dx
dy
x
2
? ? ?
?
?
?
?
?
 
 
4. Image of (1, 2, 3) w.r.t a plane is ?
?
?
?
?
?
3
1 –
,
3
4 –
,
3
7 –
 then which of the following points lie on the plane 
  (1, 2, 3) dk fdlh lery esa izfrfcEc ?
?
?
?
?
?
3
1 –
,
3
4 –
,
3
7 –
 rks fuEu esa ls dkSulk fcUnq lery ij fLFkr ugha gS %
 
 (1) (–1, 1,–1)  (2) (–1, –1, –1)  (3) (–1, –1,1)  (4) (1, 1, –1) 
Ans. (4)  
Sol. d.r of normal to the plane 
 lery ds yEcor~ f}dvuqikr 
 
3
10
,
3
10
,
3
10
 
   1,   1,    1 
 midpoint of P and Q is ?
?
?
?
?
?
3
4
,
3
1
,
3
2 –
 
 P rFkk Q dk e/; fcUnq ?
?
?
?
?
?
3
4
,
3
1
,
3
2 –
 
 equation of plane x + y + z = 1 
 lery dk lehdj.k x + y + z = 1  
  
5. 
0 x
lim
? x
dt ) t 10 sin( t
x
0
?
 is equal to  
 
0 x
lim
? x
dt ) t 10 sin( t
x
0
?
 dk eku gS %  
 
 (1) 1   (2) 10   (3) 5   (4) 0  
   
 
    
   
 
   
 
                       
 
 
Ans. (4)  
Sol. Using L’Hospital 
 L gkWfLiVy ls  
 
0 x
lim
? 1
) x 0 1 sin( x
 = 0 
 
6. Let P be the set of points (x, y) such that x
2
 ? y ? – 2x + 3. Then area of region bounded by points in set 
P is 
 ekuk P fcUnqvksa (x, y) dk leqPp; bl izdkj gS fd x
2
 ? y ? – 2x + 3.  rks P ds lHkh fcUnqvksa }kjk lEc) {ks=kQy 
gksxk% 
 (1) 
3
16
   (2) 
3
32
   (3) 
3
29
   (4) 
3
20
 
Ans. (2) 
Sol. Point of intersection of y = x
2
 & y = – 2x + 3 is 
 y = x
2
 rFkk y = – 2x + 3 dk izfrPNsnu fcUnq 
 obtained by izkIr gksrk gS] x
2
 + 2x – 3 = 0 
 ? x = – 3, 1 
 So, Area  vr% {ks=kQy =
?
?
? ?
1
3
2
dx ) x x 2 3 ( = 3(4) – 2
?
?
?
?
?
?
?
?
?
2
3 1
2 2
– 
?
?
?
?
?
?
?
?
?
3
3 1
3 3
  = 12 + 8 – 
3
28
 = 
3
32
 
  
 
–3 1 
 
  
7. Let f(x) = 
? ?
1 x
x x
2
?
 : (1, 3) ? R then range of f(x) is (where [ . ] denotes greatest integer function)  
 ekuk f(x) = 
? ?
1 x
x x
2
?
 : (1, 3) ? R rks f(x) dk ifjlj gS (tgk¡ [ . ] egÙke iw.kkZad Qyu gS)  
 (1) ?
?
?
?
?
?
2
1
, 0 ?  
?
?
?
?
?
?
5
7
,
5
3
   (2) ?
?
?
?
?
?
2
1
,
5
2
?  
?
?
?
?
?
?
5
4
,
5
3
 
 (3) ?
?
?
?
?
?
1 ,
5
2
?  
?
?
?
?
?
?
5
4
, 1   (4) ?
?
?
?
?
?
3
1
, 0 ?  
?
?
?
?
?
?
5
4
,
5
2
 
Ans. (2) 
   
 
    
   
 
   
 
                       
 
 
Sol f(x) 
?
?
?
?
?
?
?
?
?
?
?
) 3 , 2 [ x ;
1 x
x 2
) 2 , 1 ( x ;
1 x
x
2
2
 
 ? f(x) is a decreasing function 
 ? f(x) âkleku Qyu gSA 
 ? y ? ?
?
?
?
?
?
2
1
,
5
2
?  
?
?
?
?
?
?
5
4
,
10
6
 
 ? y ? ?
?
?
?
?
?
2
1
,
5
2
?  
?
?
?
?
?
?
5
4
,
5
3
 
 
8. Let A = 
?
?
?
?
?
?
4 9
2 2
 and I = 
?
?
?
?
?
?
1 0
0 1
  then value of 10 A
–1
 is – 
 ekuk A = 
?
?
?
?
?
?
4 9
2 2
 rFkk I = 
?
?
?
?
?
?
1 0
0 1
  rks 10 A
–1
 dk eku gksxk %  
 (1) 4I – A  (2) 6 I – A  (3) A – 4 I  (4) A – 6 I 
Ans. (4) 
Sol. Characteristics equation of matrix ‘A’ is  
 vkO;wg ‘A’ dh vfHkyk{kf.kd lehdj.k gS & 
 0
x – 4 9
2 x – 2
? ? ? x
2
 – 6x – 10 = 0 
 ? A
2
 – 6A – 10 I = 0 
 ? ? 10A
–1
 = A – 6I 
 
9. Solution set of 3
x
(3
x
 –1) + 2 = |3
x
 –1| + |3
x
 – 2| contains  
(1) singleton set     (2) two elements  
(3) at least four elements   (4) infinite elements 
3
x
(3
x
 –1) + 2 = |3
x
 –1| + |3
x
 – 2| dk gy leqPPk; j[krk gSA 
(1) ,d gy   (2) nks gy  (3) de ls de pkj gy (4) vUur gy 
Ans. (1) 
Sol. Let 3
x
 = t 
 t(t –1) + 2 = |t –1| + |t –2| 
 t
2
 – t + 2 = |t –1| + |t –2| 
 
 
7/4 
2
1
 
a 1 2 
 
 are positive solution 
 t = a 
 3
x
 = a 
 x = a log
3
 so singleton set 
   
 
    
   
 
   
 
                       
 
 
Hindi. ekuk fd 3
x
 = t 
 t(t –1) + 2 = |t –1| + |t –2| 
 t
2
 – t + 2 = |t –1| + |t –2| 
 
 
7/4 
2
1
 
a 1 2 
 
 /kukRed gy gSA 
 t = a 
 3
x
 = a 
 x = a log
3
 ,dy leqPp;  
 
10. Mean and variance of 20 observation are 10 and 4. It was found, that in place of 11, 9 was taken by 
mistake find correct variance. 
 20 vakdM+ksa dk ek/; rFkk pfjrk Øe'k% 10 rFkk 4 gSA ;fn 11 ds LFkku ij xyrh ls 9 fy;k x;k gS rks lgh pfjrk 
gS& 
 (1) 3.99   (2) 3.98   (3) 4.01  (4) 4.02 
Ans. (1) 
Sol. 
20
x
i
?
= 10  …….(i) 
 100 –
20
x
2
i
?
= 4  …….(ii) 
 
2
i
x ? = 104 × 20 = 2080 
 Actual mean lgh ek/; = 
20
11 9 – 200 ?
= 
20
202
 
 Variance pfjrk = 
20
121 81 – 2080 ?
– 
2
20
202
?
?
?
?
?
?
 
 = 
20
2120
– (10.1)
2 
= 106 – 102.01 = 3.99  
 
11. ?x + 2y + 2z = 5  
 2 ?x + 3y + 5z = 8  
? 4x + ?y + 6z = 10  
 for the system of equation check the correct option. 
 (1) Infinite solutions when ? = 8   (2) Infinite solutions when ? = 2 
 (3) no solutions  when ? = 8   (4) no solutions  when ? = 2 
Read More
357 docs|148 tests
Related Searches

Extra Questions

,

MCQs

,

study material

,

mock tests for examination

,

Viva Questions

,

practice quizzes

,

Semester Notes

,

past year papers

,

ppt

,

JEE Main 2020 Mathematics January 8 Shift 2 Paper & Solutions | Mock Tests for JEE Main and Advanced 2025

,

Objective type Questions

,

JEE Main 2020 Mathematics January 8 Shift 2 Paper & Solutions | Mock Tests for JEE Main and Advanced 2025

,

Sample Paper

,

JEE Main 2020 Mathematics January 8 Shift 2 Paper & Solutions | Mock Tests for JEE Main and Advanced 2025

,

video lectures

,

pdf

,

Summary

,

Previous Year Questions with Solutions

,

Important questions

,

Free

,

Exam

,

shortcuts and tricks

;