JEE Exam  >  JEE Notes  >  Mock Tests for JEE Main and Advanced 2025  >  JEE Main 2020 Mathematics January 9 Shift 1 Paper & Solutions

JEE Main 2020 Mathematics January 9 Shift 1 Paper & Solutions | Mock Tests for JEE Main and Advanced 2025 PDF Download

Download, print and study this document offline
Please wait while the PDF view is loading
 Page 1


   
 
    
   
 
   
 
                       
 
 
 
 
PART : MATHEMATICS 
 
SECTION – 1  
Straight Objective Type   (lh/ks oLrqfu"B izdkj) 
This section contains 20 multiple choice questions. Each question has 4 choices (1), (2), (3) and (4) for its 
answer, out of which Only One is correct. 
bl [k.M esa 20 cgq&fodYih iz'u gSaA izR;sd iz'u ds 4 fodYi (1), (2), (3) rFkk (4) gSa] ftuesa ls flQZ ,d lgh gSA 
 
1. Find the number of solution of log1/2 |sinx| = 2 – log1/2 |cosx| , x ? [0,2 ?] 
 x ?[0,2 ?] esa log1/2 |sinx| = 2 – log1/2 |cosx| ds gyksas dh la[;k gS& 
 (1) 2  (2) 4  (3) 6  (4) 8 
Ans. (4) 
Sol. log1/2 |sinx| = 2 – log1/2 |cosx| 
 log1/2 |sinx cosx| = 2 
 |sinx cosx| = 
4
1
 
 sin2x = ± 
2
1
 
 
? ? 2 ? ?
2
1
2
1
–
 
 
 Number of solution gyksa dh la[;k = 8.  
 
2. If e1 and e2 are eccentricities of 1
4
y
18
x
2 2
? ? and 1
4
y
9
x
2 2
? ? , respectively and if the point (e1, e2) lies 
on ellipse 15x
2
 + 3y
2
 = k. Then find value of k 
 ;fn e1 rFkk e2 Øe’’'k% 1
4
y
18
x
2 2
? ? rFkk 1
4
y
9
x
2 2
? ? dh mRdsUnzrk,sa gS rFkk fcUnq (e1, e2) nh?kZo`Ùk 15x
2
 + 3y
2
 = k 
ij fLFkr gS rks k dk eku gS& 
 
 (1) 14   (2) 15   (3) 16   (4) 17 
Ans. (3) 
Sol. e1 = 
18
4
1 ? = 
9
7
 = 
3
7
   
 e2 = 
9
4
1 ? = 
9
13
 = 
3
13
 
 k e 3 e 15
2
2
2
1
? ? ? k = 15 ?
?
?
?
?
?
? ?
?
?
?
?
?
9
13
3
9
7
 ? k = 16  
Page 2


   
 
    
   
 
   
 
                       
 
 
 
 
PART : MATHEMATICS 
 
SECTION – 1  
Straight Objective Type   (lh/ks oLrqfu"B izdkj) 
This section contains 20 multiple choice questions. Each question has 4 choices (1), (2), (3) and (4) for its 
answer, out of which Only One is correct. 
bl [k.M esa 20 cgq&fodYih iz'u gSaA izR;sd iz'u ds 4 fodYi (1), (2), (3) rFkk (4) gSa] ftuesa ls flQZ ,d lgh gSA 
 
1. Find the number of solution of log1/2 |sinx| = 2 – log1/2 |cosx| , x ? [0,2 ?] 
 x ?[0,2 ?] esa log1/2 |sinx| = 2 – log1/2 |cosx| ds gyksas dh la[;k gS& 
 (1) 2  (2) 4  (3) 6  (4) 8 
Ans. (4) 
Sol. log1/2 |sinx| = 2 – log1/2 |cosx| 
 log1/2 |sinx cosx| = 2 
 |sinx cosx| = 
4
1
 
 sin2x = ± 
2
1
 
 
? ? 2 ? ?
2
1
2
1
–
 
 
 Number of solution gyksa dh la[;k = 8.  
 
2. If e1 and e2 are eccentricities of 1
4
y
18
x
2 2
? ? and 1
4
y
9
x
2 2
? ? , respectively and if the point (e1, e2) lies 
on ellipse 15x
2
 + 3y
2
 = k. Then find value of k 
 ;fn e1 rFkk e2 Øe’’'k% 1
4
y
18
x
2 2
? ? rFkk 1
4
y
9
x
2 2
? ? dh mRdsUnzrk,sa gS rFkk fcUnq (e1, e2) nh?kZo`Ùk 15x
2
 + 3y
2
 = k 
ij fLFkr gS rks k dk eku gS& 
 
 (1) 14   (2) 15   (3) 16   (4) 17 
Ans. (3) 
Sol. e1 = 
18
4
1 ? = 
9
7
 = 
3
7
   
 e2 = 
9
4
1 ? = 
9
13
 = 
3
13
 
 k e 3 e 15
2
2
2
1
? ? ? k = 15 ?
?
?
?
?
?
? ?
?
?
?
?
?
9
13
3
9
7
 ? k = 16  
   
 
    
   
 
   
 
                       
 
 
 
3. Find integration 
? ? ? ?
?
? ?
7 / 8 7 / 6
4 x . 3 x
dx
 
 lekdyu 
? ? ? ?
?
? ?
7 / 8 7 / 6
4 x . 3 x
dx
= 
(1) c
4 x
3 x 7
1
? ?
?
?
?
?
?
?
?
 (2) c
4 x
3 x
7
7
1
? ?
?
?
?
?
?
?
?
 (3) c
4 x
3 x
7
7
6
? ?
?
?
?
?
?
?
?
 (4) c
3 x
4 x
7
7
6
? ?
?
?
?
?
?
?
?
 
Ans. (1) 
Sol. 
? ?
dx
4 x
1
4 x
3 x
2
7
6 –
?
?
?
?
?
?
?
?
?
?
 
 Let 
7
t
4 x
3 x
?
?
?
,  
 
? ?
dt t 7 dx
4 x
7
6
2
?
?
    
 
?
? ? c t dt t t
6 6 –
  
 
4. If 
i 2 z
i – z
?
= 1, |z| = 
2
5
 then value of |z + 3i| is  
 ;fn
i 2 z
i – z
?
= 1, |z| = 
2
5
 rks |z + 3i| dk eku gS& 
(1) 
2
7
   (2) 10  (3) 5   (4) 3 
Ans. (1) 
Sol. x
2
 + (y–1)
2
 = x
2
 + (y+2)
2
 
 –2y + 1 = 4y + 4 
 6y = –3 ? y = –
2
1
 
 x
2
 + y
2
 = 
4
25
 ? x
2
 = 
4
24
 = 6 
 ? z = ± 6 – 
2
i
 
 |z + 3i| = 
4
25
6 ? = 
4
49
 
 |z + 3i | = 
2
7
 
 
5. 
48
1
16
1
4
1
8 4 2 ? ? ………….. 8 =  
 (1) 2   (2) 2   (3) 
4
1
2   (4) 1 
Ans. (1) 
Page 3


   
 
    
   
 
   
 
                       
 
 
 
 
PART : MATHEMATICS 
 
SECTION – 1  
Straight Objective Type   (lh/ks oLrqfu"B izdkj) 
This section contains 20 multiple choice questions. Each question has 4 choices (1), (2), (3) and (4) for its 
answer, out of which Only One is correct. 
bl [k.M esa 20 cgq&fodYih iz'u gSaA izR;sd iz'u ds 4 fodYi (1), (2), (3) rFkk (4) gSa] ftuesa ls flQZ ,d lgh gSA 
 
1. Find the number of solution of log1/2 |sinx| = 2 – log1/2 |cosx| , x ? [0,2 ?] 
 x ?[0,2 ?] esa log1/2 |sinx| = 2 – log1/2 |cosx| ds gyksas dh la[;k gS& 
 (1) 2  (2) 4  (3) 6  (4) 8 
Ans. (4) 
Sol. log1/2 |sinx| = 2 – log1/2 |cosx| 
 log1/2 |sinx cosx| = 2 
 |sinx cosx| = 
4
1
 
 sin2x = ± 
2
1
 
 
? ? 2 ? ?
2
1
2
1
–
 
 
 Number of solution gyksa dh la[;k = 8.  
 
2. If e1 and e2 are eccentricities of 1
4
y
18
x
2 2
? ? and 1
4
y
9
x
2 2
? ? , respectively and if the point (e1, e2) lies 
on ellipse 15x
2
 + 3y
2
 = k. Then find value of k 
 ;fn e1 rFkk e2 Øe’’'k% 1
4
y
18
x
2 2
? ? rFkk 1
4
y
9
x
2 2
? ? dh mRdsUnzrk,sa gS rFkk fcUnq (e1, e2) nh?kZo`Ùk 15x
2
 + 3y
2
 = k 
ij fLFkr gS rks k dk eku gS& 
 
 (1) 14   (2) 15   (3) 16   (4) 17 
Ans. (3) 
Sol. e1 = 
18
4
1 ? = 
9
7
 = 
3
7
   
 e2 = 
9
4
1 ? = 
9
13
 = 
3
13
 
 k e 3 e 15
2
2
2
1
? ? ? k = 15 ?
?
?
?
?
?
? ?
?
?
?
?
?
9
13
3
9
7
 ? k = 16  
   
 
    
   
 
   
 
                       
 
 
 
3. Find integration 
? ? ? ?
?
? ?
7 / 8 7 / 6
4 x . 3 x
dx
 
 lekdyu 
? ? ? ?
?
? ?
7 / 8 7 / 6
4 x . 3 x
dx
= 
(1) c
4 x
3 x 7
1
? ?
?
?
?
?
?
?
?
 (2) c
4 x
3 x
7
7
1
? ?
?
?
?
?
?
?
?
 (3) c
4 x
3 x
7
7
6
? ?
?
?
?
?
?
?
?
 (4) c
3 x
4 x
7
7
6
? ?
?
?
?
?
?
?
?
 
Ans. (1) 
Sol. 
? ?
dx
4 x
1
4 x
3 x
2
7
6 –
?
?
?
?
?
?
?
?
?
?
 
 Let 
7
t
4 x
3 x
?
?
?
,  
 
? ?
dt t 7 dx
4 x
7
6
2
?
?
    
 
?
? ? c t dt t t
6 6 –
  
 
4. If 
i 2 z
i – z
?
= 1, |z| = 
2
5
 then value of |z + 3i| is  
 ;fn
i 2 z
i – z
?
= 1, |z| = 
2
5
 rks |z + 3i| dk eku gS& 
(1) 
2
7
   (2) 10  (3) 5   (4) 3 
Ans. (1) 
Sol. x
2
 + (y–1)
2
 = x
2
 + (y+2)
2
 
 –2y + 1 = 4y + 4 
 6y = –3 ? y = –
2
1
 
 x
2
 + y
2
 = 
4
25
 ? x
2
 = 
4
24
 = 6 
 ? z = ± 6 – 
2
i
 
 |z + 3i| = 
4
25
6 ? = 
4
49
 
 |z + 3i | = 
2
7
 
 
5. 
48
1
16
1
4
1
8 4 2 ? ? ………….. 8 =  
 (1) 2   (2) 2   (3) 
4
1
2   (4) 1 
Ans. (1) 
   
 
    
   
 
   
 
                       
 
 
 
Sol. 
? ? ? ? .. ..........
48
3
16
2
4
1
2 
 = 
? ? ? ? .. ..........
16
1
8
1
4
1
2 = 2 
 
6. Value of 
8
3
cos
8
cos
3
? ?
+ sin
3 
8
?
sin
8
3 ?
 
is
  
 
8
3
cos
8
cos
3
? ?
+ sin
3 
8
?
sin
8
3 ?
 
dk eku gS&
  
  (1) 
2 2
1
   (2) 
2
1
   (3) 
2
1
  (4) 
2
1
– 
Ans. (1) 
Sol. cos
3
 
8
?
 
?
?
?
?
?
? ? ?
8
cos 3 –
8
cos 4
3
 + sin
3
8
?
?
?
?
?
?
? ? ?
8
sin 4 –
8
sin 3
3
 
 
= 4cos
6
8
?
– 4sin
6
8
?
 
– 3cos
4
8
?
 
+ 3sin
4
8
?
  
= ?
?
?
?
?
?
?
?
?
?
?
? ? ?
8
sin –
8
cos 4
2 2
?
?
?
?
?
?
?
?
?
?
?
? ? ?
?
?
?
?
8
cos
8
sin
8
cos
8
sin
2 2 4 4
– 3 ?
?
?
?
?
?
?
?
?
?
?
? ? ?
8
sin –
8
cos
2 2
 
= cos 
?
?
?
?
?
?
?
?
?
?
?
? ? ? ?
3 –
8
cos
8
sin – 1 4
4
2 2
 = 
2
1
?
?
?
?
?
?
2
1
– 1 = 
2 2
1
 
 
7. Find the value of 
?
?
?
2
0
8 8
8
dx
x cos x sin
x sin x
 
   
?
?
?
2
0
8 8
8
dx
x cos x sin
x sin x
 dk eku gS& 
(1) ?
2
    (2) 2 ?
2
    (3) 3 ?
2
    (4) 4 ?
2
  
Ans. (1) 
Sol. 
?
?
?
?
?
?
0
8 8
8
8 8
8
dx
x cos x sin
x sin ) x – 2 (
x cos x sin
x sin x
 
 = 
?
?
?
?
0
8 8
8
dx
x cos x sin
x sin 2
 
 = dx
x cos x sin
x cos
x cos x sin
x sin
2
2 /
0
8 8
8
8 8
8
?
?
?
?
?
? 
 = dx 1 2
2 /
0
?
?
? = 2 ? ?× 
2
?
= ?
2 
Page 4


   
 
    
   
 
   
 
                       
 
 
 
 
PART : MATHEMATICS 
 
SECTION – 1  
Straight Objective Type   (lh/ks oLrqfu"B izdkj) 
This section contains 20 multiple choice questions. Each question has 4 choices (1), (2), (3) and (4) for its 
answer, out of which Only One is correct. 
bl [k.M esa 20 cgq&fodYih iz'u gSaA izR;sd iz'u ds 4 fodYi (1), (2), (3) rFkk (4) gSa] ftuesa ls flQZ ,d lgh gSA 
 
1. Find the number of solution of log1/2 |sinx| = 2 – log1/2 |cosx| , x ? [0,2 ?] 
 x ?[0,2 ?] esa log1/2 |sinx| = 2 – log1/2 |cosx| ds gyksas dh la[;k gS& 
 (1) 2  (2) 4  (3) 6  (4) 8 
Ans. (4) 
Sol. log1/2 |sinx| = 2 – log1/2 |cosx| 
 log1/2 |sinx cosx| = 2 
 |sinx cosx| = 
4
1
 
 sin2x = ± 
2
1
 
 
? ? 2 ? ?
2
1
2
1
–
 
 
 Number of solution gyksa dh la[;k = 8.  
 
2. If e1 and e2 are eccentricities of 1
4
y
18
x
2 2
? ? and 1
4
y
9
x
2 2
? ? , respectively and if the point (e1, e2) lies 
on ellipse 15x
2
 + 3y
2
 = k. Then find value of k 
 ;fn e1 rFkk e2 Øe’’'k% 1
4
y
18
x
2 2
? ? rFkk 1
4
y
9
x
2 2
? ? dh mRdsUnzrk,sa gS rFkk fcUnq (e1, e2) nh?kZo`Ùk 15x
2
 + 3y
2
 = k 
ij fLFkr gS rks k dk eku gS& 
 
 (1) 14   (2) 15   (3) 16   (4) 17 
Ans. (3) 
Sol. e1 = 
18
4
1 ? = 
9
7
 = 
3
7
   
 e2 = 
9
4
1 ? = 
9
13
 = 
3
13
 
 k e 3 e 15
2
2
2
1
? ? ? k = 15 ?
?
?
?
?
?
? ?
?
?
?
?
?
9
13
3
9
7
 ? k = 16  
   
 
    
   
 
   
 
                       
 
 
 
3. Find integration 
? ? ? ?
?
? ?
7 / 8 7 / 6
4 x . 3 x
dx
 
 lekdyu 
? ? ? ?
?
? ?
7 / 8 7 / 6
4 x . 3 x
dx
= 
(1) c
4 x
3 x 7
1
? ?
?
?
?
?
?
?
?
 (2) c
4 x
3 x
7
7
1
? ?
?
?
?
?
?
?
?
 (3) c
4 x
3 x
7
7
6
? ?
?
?
?
?
?
?
?
 (4) c
3 x
4 x
7
7
6
? ?
?
?
?
?
?
?
?
 
Ans. (1) 
Sol. 
? ?
dx
4 x
1
4 x
3 x
2
7
6 –
?
?
?
?
?
?
?
?
?
?
 
 Let 
7
t
4 x
3 x
?
?
?
,  
 
? ?
dt t 7 dx
4 x
7
6
2
?
?
    
 
?
? ? c t dt t t
6 6 –
  
 
4. If 
i 2 z
i – z
?
= 1, |z| = 
2
5
 then value of |z + 3i| is  
 ;fn
i 2 z
i – z
?
= 1, |z| = 
2
5
 rks |z + 3i| dk eku gS& 
(1) 
2
7
   (2) 10  (3) 5   (4) 3 
Ans. (1) 
Sol. x
2
 + (y–1)
2
 = x
2
 + (y+2)
2
 
 –2y + 1 = 4y + 4 
 6y = –3 ? y = –
2
1
 
 x
2
 + y
2
 = 
4
25
 ? x
2
 = 
4
24
 = 6 
 ? z = ± 6 – 
2
i
 
 |z + 3i| = 
4
25
6 ? = 
4
49
 
 |z + 3i | = 
2
7
 
 
5. 
48
1
16
1
4
1
8 4 2 ? ? ………….. 8 =  
 (1) 2   (2) 2   (3) 
4
1
2   (4) 1 
Ans. (1) 
   
 
    
   
 
   
 
                       
 
 
 
Sol. 
? ? ? ? .. ..........
48
3
16
2
4
1
2 
 = 
? ? ? ? .. ..........
16
1
8
1
4
1
2 = 2 
 
6. Value of 
8
3
cos
8
cos
3
? ?
+ sin
3 
8
?
sin
8
3 ?
 
is
  
 
8
3
cos
8
cos
3
? ?
+ sin
3 
8
?
sin
8
3 ?
 
dk eku gS&
  
  (1) 
2 2
1
   (2) 
2
1
   (3) 
2
1
  (4) 
2
1
– 
Ans. (1) 
Sol. cos
3
 
8
?
 
?
?
?
?
?
? ? ?
8
cos 3 –
8
cos 4
3
 + sin
3
8
?
?
?
?
?
?
? ? ?
8
sin 4 –
8
sin 3
3
 
 
= 4cos
6
8
?
– 4sin
6
8
?
 
– 3cos
4
8
?
 
+ 3sin
4
8
?
  
= ?
?
?
?
?
?
?
?
?
?
?
? ? ?
8
sin –
8
cos 4
2 2
?
?
?
?
?
?
?
?
?
?
?
? ? ?
?
?
?
?
8
cos
8
sin
8
cos
8
sin
2 2 4 4
– 3 ?
?
?
?
?
?
?
?
?
?
?
? ? ?
8
sin –
8
cos
2 2
 
= cos 
?
?
?
?
?
?
?
?
?
?
?
? ? ? ?
3 –
8
cos
8
sin – 1 4
4
2 2
 = 
2
1
?
?
?
?
?
?
2
1
– 1 = 
2 2
1
 
 
7. Find the value of 
?
?
?
2
0
8 8
8
dx
x cos x sin
x sin x
 
   
?
?
?
2
0
8 8
8
dx
x cos x sin
x sin x
 dk eku gS& 
(1) ?
2
    (2) 2 ?
2
    (3) 3 ?
2
    (4) 4 ?
2
  
Ans. (1) 
Sol. 
?
?
?
?
?
?
0
8 8
8
8 8
8
dx
x cos x sin
x sin ) x – 2 (
x cos x sin
x sin x
 
 = 
?
?
?
?
0
8 8
8
dx
x cos x sin
x sin 2
 
 = dx
x cos x sin
x cos
x cos x sin
x sin
2
2 /
0
8 8
8
8 8
8
?
?
?
?
?
? 
 = dx 1 2
2 /
0
?
?
? = 2 ? ?× 
2
?
= ?
2 
   
 
    
   
 
   
 
                       
 
 
8. If f(x) = a + bx + cx
2
 where a, b, c ?R then 
?
1
0
dx ) x ( f is 
 ;fn f(x) = a + bx + cx
2
 tgkaa a, b, c ?R rc 
?
1
0
dx ) x ( f cjkcj gS 
  (1) 
3
1
? ? ? ?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
? ?
2
1
f 2 0 f 1 f 
(2) 
6
1
? ? ? ?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
? ?
2
1
f 4 0 f 1 f 
(3) 
6
1
? ? ? ?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
2
1
f 4 – 0 f 1 f 
(4) 
6
1
? ? ? ?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
2
1
f 4 – 0 f – 1 f 
Ans. (2) 
Sol. ? ?
?
? ?
1
0
2
dx cx bx a = ax + 
2
bx
2
+ 
1
0
3
3
cx
= a + 
2
b
 + 
3
c
  
 f(1) = a + b + c 
 f(0) = a 
 f ?
?
?
?
?
?
2
1
= a + 
2
b
 + 
4
C
 
 Now 
6
1
? ? ? ?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
? ?
2
1
f 4 0 f 1 f 
 = 
6
1
?
?
?
?
?
?
?
?
?
?
?
?
?
?
? ? ? ? ? ?
4
c
2
b
a 4 a c b a 
 = 
6
1
? ? c 2 b 3 a 6 ? ? = a + 
2
b
+ 
3
c
  
 
 
9. If number of 5 digit numbers which can be formed without repeating any digit while tenth place of all of 
the numbers must be 2 is 336 k find value of k   
 fcuk fdlh vad dh iqujko`fÙk ds cuus okys 5 vadks dh la[;kvksas dh la[;k tcfd ngkbZ ds LFkku ij lHkh la[;kvksa esa 
2 vkrk gks 336 k gS rks k dk eku gS&  
  (1) 8   (2) 7   (3) 6   (4) 5 
Ans. (1) 
Sol.  
   2  
  
Number of numbers la[;kvksa dh la[;k = 8 ? ?8 ? ?7 ? ?6 = 2688 = 336k ? ?k = 8 
 
Page 5


   
 
    
   
 
   
 
                       
 
 
 
 
PART : MATHEMATICS 
 
SECTION – 1  
Straight Objective Type   (lh/ks oLrqfu"B izdkj) 
This section contains 20 multiple choice questions. Each question has 4 choices (1), (2), (3) and (4) for its 
answer, out of which Only One is correct. 
bl [k.M esa 20 cgq&fodYih iz'u gSaA izR;sd iz'u ds 4 fodYi (1), (2), (3) rFkk (4) gSa] ftuesa ls flQZ ,d lgh gSA 
 
1. Find the number of solution of log1/2 |sinx| = 2 – log1/2 |cosx| , x ? [0,2 ?] 
 x ?[0,2 ?] esa log1/2 |sinx| = 2 – log1/2 |cosx| ds gyksas dh la[;k gS& 
 (1) 2  (2) 4  (3) 6  (4) 8 
Ans. (4) 
Sol. log1/2 |sinx| = 2 – log1/2 |cosx| 
 log1/2 |sinx cosx| = 2 
 |sinx cosx| = 
4
1
 
 sin2x = ± 
2
1
 
 
? ? 2 ? ?
2
1
2
1
–
 
 
 Number of solution gyksa dh la[;k = 8.  
 
2. If e1 and e2 are eccentricities of 1
4
y
18
x
2 2
? ? and 1
4
y
9
x
2 2
? ? , respectively and if the point (e1, e2) lies 
on ellipse 15x
2
 + 3y
2
 = k. Then find value of k 
 ;fn e1 rFkk e2 Øe’’'k% 1
4
y
18
x
2 2
? ? rFkk 1
4
y
9
x
2 2
? ? dh mRdsUnzrk,sa gS rFkk fcUnq (e1, e2) nh?kZo`Ùk 15x
2
 + 3y
2
 = k 
ij fLFkr gS rks k dk eku gS& 
 
 (1) 14   (2) 15   (3) 16   (4) 17 
Ans. (3) 
Sol. e1 = 
18
4
1 ? = 
9
7
 = 
3
7
   
 e2 = 
9
4
1 ? = 
9
13
 = 
3
13
 
 k e 3 e 15
2
2
2
1
? ? ? k = 15 ?
?
?
?
?
?
? ?
?
?
?
?
?
9
13
3
9
7
 ? k = 16  
   
 
    
   
 
   
 
                       
 
 
 
3. Find integration 
? ? ? ?
?
? ?
7 / 8 7 / 6
4 x . 3 x
dx
 
 lekdyu 
? ? ? ?
?
? ?
7 / 8 7 / 6
4 x . 3 x
dx
= 
(1) c
4 x
3 x 7
1
? ?
?
?
?
?
?
?
?
 (2) c
4 x
3 x
7
7
1
? ?
?
?
?
?
?
?
?
 (3) c
4 x
3 x
7
7
6
? ?
?
?
?
?
?
?
?
 (4) c
3 x
4 x
7
7
6
? ?
?
?
?
?
?
?
?
 
Ans. (1) 
Sol. 
? ?
dx
4 x
1
4 x
3 x
2
7
6 –
?
?
?
?
?
?
?
?
?
?
 
 Let 
7
t
4 x
3 x
?
?
?
,  
 
? ?
dt t 7 dx
4 x
7
6
2
?
?
    
 
?
? ? c t dt t t
6 6 –
  
 
4. If 
i 2 z
i – z
?
= 1, |z| = 
2
5
 then value of |z + 3i| is  
 ;fn
i 2 z
i – z
?
= 1, |z| = 
2
5
 rks |z + 3i| dk eku gS& 
(1) 
2
7
   (2) 10  (3) 5   (4) 3 
Ans. (1) 
Sol. x
2
 + (y–1)
2
 = x
2
 + (y+2)
2
 
 –2y + 1 = 4y + 4 
 6y = –3 ? y = –
2
1
 
 x
2
 + y
2
 = 
4
25
 ? x
2
 = 
4
24
 = 6 
 ? z = ± 6 – 
2
i
 
 |z + 3i| = 
4
25
6 ? = 
4
49
 
 |z + 3i | = 
2
7
 
 
5. 
48
1
16
1
4
1
8 4 2 ? ? ………….. 8 =  
 (1) 2   (2) 2   (3) 
4
1
2   (4) 1 
Ans. (1) 
   
 
    
   
 
   
 
                       
 
 
 
Sol. 
? ? ? ? .. ..........
48
3
16
2
4
1
2 
 = 
? ? ? ? .. ..........
16
1
8
1
4
1
2 = 2 
 
6. Value of 
8
3
cos
8
cos
3
? ?
+ sin
3 
8
?
sin
8
3 ?
 
is
  
 
8
3
cos
8
cos
3
? ?
+ sin
3 
8
?
sin
8
3 ?
 
dk eku gS&
  
  (1) 
2 2
1
   (2) 
2
1
   (3) 
2
1
  (4) 
2
1
– 
Ans. (1) 
Sol. cos
3
 
8
?
 
?
?
?
?
?
? ? ?
8
cos 3 –
8
cos 4
3
 + sin
3
8
?
?
?
?
?
?
? ? ?
8
sin 4 –
8
sin 3
3
 
 
= 4cos
6
8
?
– 4sin
6
8
?
 
– 3cos
4
8
?
 
+ 3sin
4
8
?
  
= ?
?
?
?
?
?
?
?
?
?
?
? ? ?
8
sin –
8
cos 4
2 2
?
?
?
?
?
?
?
?
?
?
?
? ? ?
?
?
?
?
8
cos
8
sin
8
cos
8
sin
2 2 4 4
– 3 ?
?
?
?
?
?
?
?
?
?
?
? ? ?
8
sin –
8
cos
2 2
 
= cos 
?
?
?
?
?
?
?
?
?
?
?
? ? ? ?
3 –
8
cos
8
sin – 1 4
4
2 2
 = 
2
1
?
?
?
?
?
?
2
1
– 1 = 
2 2
1
 
 
7. Find the value of 
?
?
?
2
0
8 8
8
dx
x cos x sin
x sin x
 
   
?
?
?
2
0
8 8
8
dx
x cos x sin
x sin x
 dk eku gS& 
(1) ?
2
    (2) 2 ?
2
    (3) 3 ?
2
    (4) 4 ?
2
  
Ans. (1) 
Sol. 
?
?
?
?
?
?
0
8 8
8
8 8
8
dx
x cos x sin
x sin ) x – 2 (
x cos x sin
x sin x
 
 = 
?
?
?
?
0
8 8
8
dx
x cos x sin
x sin 2
 
 = dx
x cos x sin
x cos
x cos x sin
x sin
2
2 /
0
8 8
8
8 8
8
?
?
?
?
?
? 
 = dx 1 2
2 /
0
?
?
? = 2 ? ?× 
2
?
= ?
2 
   
 
    
   
 
   
 
                       
 
 
8. If f(x) = a + bx + cx
2
 where a, b, c ?R then 
?
1
0
dx ) x ( f is 
 ;fn f(x) = a + bx + cx
2
 tgkaa a, b, c ?R rc 
?
1
0
dx ) x ( f cjkcj gS 
  (1) 
3
1
? ? ? ?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
? ?
2
1
f 2 0 f 1 f 
(2) 
6
1
? ? ? ?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
? ?
2
1
f 4 0 f 1 f 
(3) 
6
1
? ? ? ?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
2
1
f 4 – 0 f 1 f 
(4) 
6
1
? ? ? ?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
2
1
f 4 – 0 f – 1 f 
Ans. (2) 
Sol. ? ?
?
? ?
1
0
2
dx cx bx a = ax + 
2
bx
2
+ 
1
0
3
3
cx
= a + 
2
b
 + 
3
c
  
 f(1) = a + b + c 
 f(0) = a 
 f ?
?
?
?
?
?
2
1
= a + 
2
b
 + 
4
C
 
 Now 
6
1
? ? ? ?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
? ?
2
1
f 4 0 f 1 f 
 = 
6
1
?
?
?
?
?
?
?
?
?
?
?
?
?
?
? ? ? ? ? ?
4
c
2
b
a 4 a c b a 
 = 
6
1
? ? c 2 b 3 a 6 ? ? = a + 
2
b
+ 
3
c
  
 
 
9. If number of 5 digit numbers which can be formed without repeating any digit while tenth place of all of 
the numbers must be 2 is 336 k find value of k   
 fcuk fdlh vad dh iqujko`fÙk ds cuus okys 5 vadks dh la[;kvksas dh la[;k tcfd ngkbZ ds LFkku ij lHkh la[;kvksa esa 
2 vkrk gks 336 k gS rks k dk eku gS&  
  (1) 8   (2) 7   (3) 6   (4) 5 
Ans. (1) 
Sol.  
   2  
  
Number of numbers la[;kvksa dh la[;k = 8 ? ?8 ? ?7 ? ?6 = 2688 = 336k ? ?k = 8 
 
   
 
    
   
 
   
 
                       
 
 
10. A (3,–1), B(1,3), C(2,4) are vertices of ?ABC if  D is centroid of ?ABC and P is point of intersection of 
lines x + 3y – 1 = 0 and 3x – y + 1 = 0 then which of the following points lies on line joining D and P 
 f=kHkqt ABC ds '’kh"kZ A (3,–1), B(1,3), C(2,4) gS ;fn D f=kHkqt ABC dk dsUnzd gS rFkk P js[kkvksa x + 3y – 1 = 0 
rFkk 3x – y + 1 = 0 dk izfrPNsn fcUnq gS rks fuEu esa ls dkSulk fcUnq D rFkk P dks tksM+us okyh js[kk ij fLFkr gS& 
 (1) (–9,–7)   (2*) (–9,–6)  (3) (9,6)   (4) ? ? 6 ,– 9 
Ans. (2) 
Sol. D (2,2) 
 Point of intersection P ?
?
?
?
?
?
5
2
,
5
1
– 
 equation of line DP 
 8x – 11y + 6 = 0 
Sol. D (2,2) 
 izfrPNsn fcUnq P ?
?
?
?
?
?
5
2
,
5
1
– 
 js[kk DP dk lehdj.k  
 8x – 11y + 6 = 0 
 
 
11. If f(x) is twice differentiable and continuous function in x ? [a,b] also f'(x) > 0 and f ''(x)  < 0 and c ? (a,b) 
then 
) c ( f – ) b ( f
) a ( f – ) c ( f
is greater than 
 ;fn f(x) nks ckj vodyuh; rFkk lrr~ Qyu gS rFkk x ? [a,b] rFkk f'(x) > 0, f ''(x)  < 0 rFkk c ? (a,b) rks 
) c ( f – ) b ( f
) a ( f – ) c ( f
 ftlls cM+k gS] og gS& 
  (1) 
a – c
c – b
  (2) 1   (3) 
c – b
b a ?
  (4) 
c – b
a – c
 
Ans. (4) 
Sol. Lets use LMVT for x ??[a,c] 
 
a – c
) a ( f – ) c ( f
 = f'( ?) , ? ? (a,c) 
 also use LMVT for x ? [c,b] 
 
c – b
) c ( f – ) b ( f
 = f'( ?) , ? ? (c,b) 
 ? f ''(x) < 0 ? f '(x) is decreasing 
 f '( ?) > f '( ?) 
 
a – c
) a ( f – ) c ( f
 > 
c – b
) c ( f – ) b ( f
 
 
) c ( f – ) b ( f
) a ( f – ) c ( f
 > 
c – b
a – c
 ( ? f(x) is increasing) 
Read More
357 docs|148 tests
Related Searches

Summary

,

MCQs

,

JEE Main 2020 Mathematics January 9 Shift 1 Paper & Solutions | Mock Tests for JEE Main and Advanced 2025

,

shortcuts and tricks

,

Exam

,

practice quizzes

,

Semester Notes

,

Viva Questions

,

Previous Year Questions with Solutions

,

ppt

,

JEE Main 2020 Mathematics January 9 Shift 1 Paper & Solutions | Mock Tests for JEE Main and Advanced 2025

,

JEE Main 2020 Mathematics January 9 Shift 1 Paper & Solutions | Mock Tests for JEE Main and Advanced 2025

,

Free

,

Objective type Questions

,

mock tests for examination

,

past year papers

,

video lectures

,

pdf

,

Sample Paper

,

Important questions

,

study material

,

Extra Questions

;