Page 1
17
th
March. 2021 | Shift 2
SECTION – A
1. If the Boolean expression ?? pq ? ?? pq ? is a tautology, then and ? are respectively given by :
(1) ?, ?
(2) ?, ?
(3) ?, ?
(4) ?, ?
Ans. (2)
Sol. ?? pq ? ??? pq ?
?? pq ? ??? ~p q ?
??? ? ~p ~q ~p q ?? ?
?? ~p ~q q ?? ?Tautology
? ? ?
? ? ?
2. Let the tangent to the circle x
2
+ y
2
= 25 at the point R(3,4) meet x-axis and y-axis at points P
and Q, respectively. If r is the radius of the circle passing through the origin O and having
centre at the incentre of the triangle OPQ, then r
2
is equal to :
(1)
625
72
(2)
585
66
(3)
125
72
(4)
529
64
Ans. (1)
Sol. Given equation of circle
x
2
+ y
2
= 25
?? ??Tangent equation at (3, 4)
T : 3x + 4y = 25
Y
(0, 0) O
X
25
4
25
3
P
25
,0
3
??
??
??
25
0,
4
??
??
??
Q
125
12
Page 2
17
th
March. 2021 | Shift 2
SECTION – A
1. If the Boolean expression ?? pq ? ?? pq ? is a tautology, then and ? are respectively given by :
(1) ?, ?
(2) ?, ?
(3) ?, ?
(4) ?, ?
Ans. (2)
Sol. ?? pq ? ??? pq ?
?? pq ? ??? ~p q ?
??? ? ~p ~q ~p q ?? ?
?? ~p ~q q ?? ?Tautology
? ? ?
? ? ?
2. Let the tangent to the circle x
2
+ y
2
= 25 at the point R(3,4) meet x-axis and y-axis at points P
and Q, respectively. If r is the radius of the circle passing through the origin O and having
centre at the incentre of the triangle OPQ, then r
2
is equal to :
(1)
625
72
(2)
585
66
(3)
125
72
(4)
529
64
Ans. (1)
Sol. Given equation of circle
x
2
+ y
2
= 25
?? ??Tangent equation at (3, 4)
T : 3x + 4y = 25
Y
(0, 0) O
X
25
4
25
3
P
25
,0
3
??
??
??
25
0,
4
??
??
??
Q
125
12
Incentre of ?OPQ.
I =
25 25 25 25
43 3 4
,
25 25 125 25 25 125
34 12 34 12
??
??
??
??
??
?? ??
??
??
.
? I =
625 625
,
75 100 125 75 100 125
??
??
?? ??
??
=
25 25
,
12 12
??
??
??
? Distance from origin to incentre is r.
? r
2
=
2
25
12
??
??
??
+
2
25
12
??
??
??
=
625
72
Therefore, the correct answer is (1)
3. Let a computer program generate only the digits 0 and 1 to form a string of binary numbers
with probability of occurrence of 0 at even places be
1
2
and probability of occurrence of 0 at the
odd place be
1
3
. Then the probability that ‘10’ is followed by ‘01’ is equal to :
(1)
1
6
(2)
1
18
(3)
1
9
(4)
1
3
Ans. (3)
Sol. P(0 at even place) =
1
2
, P(0 at odd place) =
1
3
P(1 at even place) =
1
2
, P(1 at odd place) =
2
3
P(10 is followed by 01)
=
21 11 111 2
3 23 2 232 3
??? ?
?? ? ? ? ??
??? ?
??? ?
=
11
18 18
?
=
1
9
Page 3
17
th
March. 2021 | Shift 2
SECTION – A
1. If the Boolean expression ?? pq ? ?? pq ? is a tautology, then and ? are respectively given by :
(1) ?, ?
(2) ?, ?
(3) ?, ?
(4) ?, ?
Ans. (2)
Sol. ?? pq ? ??? pq ?
?? pq ? ??? ~p q ?
??? ? ~p ~q ~p q ?? ?
?? ~p ~q q ?? ?Tautology
? ? ?
? ? ?
2. Let the tangent to the circle x
2
+ y
2
= 25 at the point R(3,4) meet x-axis and y-axis at points P
and Q, respectively. If r is the radius of the circle passing through the origin O and having
centre at the incentre of the triangle OPQ, then r
2
is equal to :
(1)
625
72
(2)
585
66
(3)
125
72
(4)
529
64
Ans. (1)
Sol. Given equation of circle
x
2
+ y
2
= 25
?? ??Tangent equation at (3, 4)
T : 3x + 4y = 25
Y
(0, 0) O
X
25
4
25
3
P
25
,0
3
??
??
??
25
0,
4
??
??
??
Q
125
12
Incentre of ?OPQ.
I =
25 25 25 25
43 3 4
,
25 25 125 25 25 125
34 12 34 12
??
??
??
??
??
?? ??
??
??
.
? I =
625 625
,
75 100 125 75 100 125
??
??
?? ??
??
=
25 25
,
12 12
??
??
??
? Distance from origin to incentre is r.
? r
2
=
2
25
12
??
??
??
+
2
25
12
??
??
??
=
625
72
Therefore, the correct answer is (1)
3. Let a computer program generate only the digits 0 and 1 to form a string of binary numbers
with probability of occurrence of 0 at even places be
1
2
and probability of occurrence of 0 at the
odd place be
1
3
. Then the probability that ‘10’ is followed by ‘01’ is equal to :
(1)
1
6
(2)
1
18
(3)
1
9
(4)
1
3
Ans. (3)
Sol. P(0 at even place) =
1
2
, P(0 at odd place) =
1
3
P(1 at even place) =
1
2
, P(1 at odd place) =
2
3
P(10 is followed by 01)
=
21 11 111 2
3 23 2 232 3
??? ?
?? ? ? ? ??
??? ?
??? ?
=
11
18 18
?
=
1
9
17
th
March. 2021 | Shift 2
4. The number of solutions of the equation x + 2tanx =
2
?
in the interval [0, 2p] is :
(1) 5
(2) 2
(3) 4
(4) 3
Ans. (4)
Sol.
x + 2 tan x =
2
?
in [0, 2 ?]
2 tan x =
2
?
– x
2 tan x =
2
?
– x
tan x =
4
?
–
x
2
y = tan x and y =
–x
2
+
4
?
3 intersection points
? 3 solutions
option (4)
5. If the equation of plane passing through the mirror image of a point (2, 3, 1) with respect to
line
x1 y–3 z 2
21 –1
??
?? and containing the line
x–2 1–y z 1
32 1
?
?? is xy z 24 ??? ?? ? , then ?? ?? ?
is equal to :
(1) 21
(2) 19
(3) 18
(4) 20
– ?
–
0
?
2 ?
2
?
3
2
?
2
?
Page 4
17
th
March. 2021 | Shift 2
SECTION – A
1. If the Boolean expression ?? pq ? ?? pq ? is a tautology, then and ? are respectively given by :
(1) ?, ?
(2) ?, ?
(3) ?, ?
(4) ?, ?
Ans. (2)
Sol. ?? pq ? ??? pq ?
?? pq ? ??? ~p q ?
??? ? ~p ~q ~p q ?? ?
?? ~p ~q q ?? ?Tautology
? ? ?
? ? ?
2. Let the tangent to the circle x
2
+ y
2
= 25 at the point R(3,4) meet x-axis and y-axis at points P
and Q, respectively. If r is the radius of the circle passing through the origin O and having
centre at the incentre of the triangle OPQ, then r
2
is equal to :
(1)
625
72
(2)
585
66
(3)
125
72
(4)
529
64
Ans. (1)
Sol. Given equation of circle
x
2
+ y
2
= 25
?? ??Tangent equation at (3, 4)
T : 3x + 4y = 25
Y
(0, 0) O
X
25
4
25
3
P
25
,0
3
??
??
??
25
0,
4
??
??
??
Q
125
12
Incentre of ?OPQ.
I =
25 25 25 25
43 3 4
,
25 25 125 25 25 125
34 12 34 12
??
??
??
??
??
?? ??
??
??
.
? I =
625 625
,
75 100 125 75 100 125
??
??
?? ??
??
=
25 25
,
12 12
??
??
??
? Distance from origin to incentre is r.
? r
2
=
2
25
12
??
??
??
+
2
25
12
??
??
??
=
625
72
Therefore, the correct answer is (1)
3. Let a computer program generate only the digits 0 and 1 to form a string of binary numbers
with probability of occurrence of 0 at even places be
1
2
and probability of occurrence of 0 at the
odd place be
1
3
. Then the probability that ‘10’ is followed by ‘01’ is equal to :
(1)
1
6
(2)
1
18
(3)
1
9
(4)
1
3
Ans. (3)
Sol. P(0 at even place) =
1
2
, P(0 at odd place) =
1
3
P(1 at even place) =
1
2
, P(1 at odd place) =
2
3
P(10 is followed by 01)
=
21 11 111 2
3 23 2 232 3
??? ?
?? ? ? ? ??
??? ?
??? ?
=
11
18 18
?
=
1
9
17
th
March. 2021 | Shift 2
4. The number of solutions of the equation x + 2tanx =
2
?
in the interval [0, 2p] is :
(1) 5
(2) 2
(3) 4
(4) 3
Ans. (4)
Sol.
x + 2 tan x =
2
?
in [0, 2 ?]
2 tan x =
2
?
– x
2 tan x =
2
?
– x
tan x =
4
?
–
x
2
y = tan x and y =
–x
2
+
4
?
3 intersection points
? 3 solutions
option (4)
5. If the equation of plane passing through the mirror image of a point (2, 3, 1) with respect to
line
x1 y–3 z 2
21 –1
??
?? and containing the line
x–2 1–y z 1
32 1
?
?? is xy z 24 ??? ?? ? , then ?? ?? ?
is equal to :
(1) 21
(2) 19
(3) 18
(4) 20
– ?
–
0
?
2 ?
2
?
3
2
?
2
?
Ans. (2)
Sol.
Let point M is (2 ? – 1, ? + 3, – ??–2)
D.R.’s of AM line are 2 ? – 1 – 2, ? + 3 – 3, – ? – 2 – 1
2 ? – 3, ?, – ??– 3
AM ? line L1
? 2(2 ? – 3) + 1 ( ?) – 1 (– ? –3) = 0
6 ? = 3, ? =
1
2
? M ?
7–5
0, ,
22
??
??
??
M is mid-point of A & B
M =
AB
2
?
B = 2 M – A
B ? (–2, 4, –6)
Now we have to find equation of plane passing through B (–2, 4, –6) & also containing the line
x–2
3
=
1–y
2
=
z1
1
?
...(1)
x–2
3
=
y–1
–2
=
z1
1
?
Point P on line is (2, 1, –1)
2 b
?
of line L2 is 3, –2, 1
n
?
|| ( 2 b
?
× PB
?
)
?B
P
L2
M
A(2, 3, 1)
B (image)
x1
2
?
=
y–3
1
=
z2
–1
?
...(L1)
Page 5
17
th
March. 2021 | Shift 2
SECTION – A
1. If the Boolean expression ?? pq ? ?? pq ? is a tautology, then and ? are respectively given by :
(1) ?, ?
(2) ?, ?
(3) ?, ?
(4) ?, ?
Ans. (2)
Sol. ?? pq ? ??? pq ?
?? pq ? ??? ~p q ?
??? ? ~p ~q ~p q ?? ?
?? ~p ~q q ?? ?Tautology
? ? ?
? ? ?
2. Let the tangent to the circle x
2
+ y
2
= 25 at the point R(3,4) meet x-axis and y-axis at points P
and Q, respectively. If r is the radius of the circle passing through the origin O and having
centre at the incentre of the triangle OPQ, then r
2
is equal to :
(1)
625
72
(2)
585
66
(3)
125
72
(4)
529
64
Ans. (1)
Sol. Given equation of circle
x
2
+ y
2
= 25
?? ??Tangent equation at (3, 4)
T : 3x + 4y = 25
Y
(0, 0) O
X
25
4
25
3
P
25
,0
3
??
??
??
25
0,
4
??
??
??
Q
125
12
Incentre of ?OPQ.
I =
25 25 25 25
43 3 4
,
25 25 125 25 25 125
34 12 34 12
??
??
??
??
??
?? ??
??
??
.
? I =
625 625
,
75 100 125 75 100 125
??
??
?? ??
??
=
25 25
,
12 12
??
??
??
? Distance from origin to incentre is r.
? r
2
=
2
25
12
??
??
??
+
2
25
12
??
??
??
=
625
72
Therefore, the correct answer is (1)
3. Let a computer program generate only the digits 0 and 1 to form a string of binary numbers
with probability of occurrence of 0 at even places be
1
2
and probability of occurrence of 0 at the
odd place be
1
3
. Then the probability that ‘10’ is followed by ‘01’ is equal to :
(1)
1
6
(2)
1
18
(3)
1
9
(4)
1
3
Ans. (3)
Sol. P(0 at even place) =
1
2
, P(0 at odd place) =
1
3
P(1 at even place) =
1
2
, P(1 at odd place) =
2
3
P(10 is followed by 01)
=
21 11 111 2
3 23 2 232 3
??? ?
?? ? ? ? ??
??? ?
??? ?
=
11
18 18
?
=
1
9
17
th
March. 2021 | Shift 2
4. The number of solutions of the equation x + 2tanx =
2
?
in the interval [0, 2p] is :
(1) 5
(2) 2
(3) 4
(4) 3
Ans. (4)
Sol.
x + 2 tan x =
2
?
in [0, 2 ?]
2 tan x =
2
?
– x
2 tan x =
2
?
– x
tan x =
4
?
–
x
2
y = tan x and y =
–x
2
+
4
?
3 intersection points
? 3 solutions
option (4)
5. If the equation of plane passing through the mirror image of a point (2, 3, 1) with respect to
line
x1 y–3 z 2
21 –1
??
?? and containing the line
x–2 1–y z 1
32 1
?
?? is xy z 24 ??? ?? ? , then ?? ?? ?
is equal to :
(1) 21
(2) 19
(3) 18
(4) 20
– ?
–
0
?
2 ?
2
?
3
2
?
2
?
Ans. (2)
Sol.
Let point M is (2 ? – 1, ? + 3, – ??–2)
D.R.’s of AM line are 2 ? – 1 – 2, ? + 3 – 3, – ? – 2 – 1
2 ? – 3, ?, – ??– 3
AM ? line L1
? 2(2 ? – 3) + 1 ( ?) – 1 (– ? –3) = 0
6 ? = 3, ? =
1
2
? M ?
7–5
0, ,
22
??
??
??
M is mid-point of A & B
M =
AB
2
?
B = 2 M – A
B ? (–2, 4, –6)
Now we have to find equation of plane passing through B (–2, 4, –6) & also containing the line
x–2
3
=
1–y
2
=
z1
1
?
...(1)
x–2
3
=
y–1
–2
=
z1
1
?
Point P on line is (2, 1, –1)
2 b
?
of line L2 is 3, –2, 1
n
?
|| ( 2 b
?
× PB
?
)
?B
P
L2
M
A(2, 3, 1)
B (image)
x1
2
?
=
y–3
1
=
z2
–1
?
...(L1)
17
th
March. 2021 | Shift 2
2 b
?
= 3
ˆ
i – 2
ˆ
j +
ˆ
k
PB
?
= – 4
ˆ
i + 3
ˆ
j – 5
ˆ
k
n
?
= 7
ˆ
i + 11
ˆ
j +
ˆ
k
? equation of plane is r
?
. n
?
= a
?
. n
?
r
?
.(7
ˆ
i + 11
ˆ
j +
ˆ
k) = (–2
ˆ
i + 4
ˆ
j – 6
ˆ
k).(7
ˆ
i + 11
ˆ
j +
ˆ
k)
7x + 11y + z = – 14 + 44 – 6
7x + 11 y + z = 24
? ? = 7
? = 11
? = 1
? ? + ? + ? = 19
option (2)
6. Consider the function f : R ?R defined by f(x) =
1
2– sin x , x 0
x
0 , x 0
??? ??
?
??? ??
? ?? ??
?
?
?
. Then f is :
(1) monotonic on (0, 8) only
(2) Not monotonic on (– 8, 0) and (0, 8)
(3) monotonic on (– 8, 0) only
(4) monotonic on (– 8, 0) ? (0, 8)
Ans. (2)
Sol.
f (x) =
1
–2–sin x , x 0
x
0,x0
1
2–sin x , x 0
x
???
?
???
??
?
?
?
?
?
??
? ?
??
???
?
f’(x) =
2
2
11 1
–x –cos – – 2–sin ,x 0
xx
x
11 1
x–cos – 2–sin ,x 0
xx
x
???? ?? ?
?
???? ?? ?
???? ?? ?
?
??? ?? ?
?
??
??? ?? ?
?
??? ?? ? ?
11 1
–cos sin –2, x 0
xx x
11 1
cos – sin 2, x 0
xx x
?
??
?
?
?
?
??
?
?
Read More