JEE Exam  >  JEE Notes  >  Mock Tests for JEE Main and Advanced 2025  >  JEE Main 2020 Mathematics September 5 Shift 1 Paper & Solutions

JEE Main 2020 Mathematics September 5 Shift 1 Paper & Solutions | Mock Tests for JEE Main and Advanced 2025 PDF Download

Download, print and study this document offline
Please wait while the PDF view is loading
 Page 1


JEE Main 2020 Paper
         5
th
 September 2020 | (Shift-1), Maths     Page | 1
Date : 5
th
 September 2020
Time : 09 : 00 am - 12 : 00 pm
Subject : Maths
Q.1 If the volume of a parallelopiped, whose coterminuous edges are given by the vectors
ˆ ˆ ˆ ˆ ˆ ˆ
a i j nk, b 2i 4j nk ? ? ? ? ? ?
?
?
and 
? ?
ˆ ˆ ˆ
c i nj 3k n 0 , ? ? ? ?
?
is 158 cu. units, then:
(1) a
?
.c
?
=17 (2) b
?
.c
?
=10 (3) n=9 (4) n=7
Sol. 2
1 1
2 4 158
1 3
n
n
n
? ?
(12 + n
2
) –(6+n) +n(2n–4)=158
3n
2
 –5n + 6 –158 = 0
3n
2
 – 5n – 152 = 0
3n
2
 – 24n + 19n – 152 = 0
(3n + 19) (n–8) = 0
? n = 8
? ?
b.c 10 ?
? ?
Q.2 A survey shows that 73% of the persons working in an office like coffee, whereas 65%
like tea. If x denotes the percentage of them, who like both coffee and tea, then x
cannot be:
(1) 63 (2) 54 (3) 38 (4) 36
Sol. 4
C ? ?Coffee & T ? ?Tea
n(C) = 73, n(T) = 65
n(coffee) = 
73
100
n(tea) = 
65
100
? ? ? n T C = 
100
x
? ? ? n C T = n(C) + n(T) – x ? 100
= 73 + 65 – x ? 100
? ?x ? 38
? 73 – x ? 0 ? x ? 73
? 65 – x ? 0 ? x ? 65
? ? 38 x 65
, x = 36
x ? min(n(C), n(T)) ? 38 ? x ? 65
Page 2


JEE Main 2020 Paper
         5
th
 September 2020 | (Shift-1), Maths     Page | 1
Date : 5
th
 September 2020
Time : 09 : 00 am - 12 : 00 pm
Subject : Maths
Q.1 If the volume of a parallelopiped, whose coterminuous edges are given by the vectors
ˆ ˆ ˆ ˆ ˆ ˆ
a i j nk, b 2i 4j nk ? ? ? ? ? ?
?
?
and 
? ?
ˆ ˆ ˆ
c i nj 3k n 0 , ? ? ? ?
?
is 158 cu. units, then:
(1) a
?
.c
?
=17 (2) b
?
.c
?
=10 (3) n=9 (4) n=7
Sol. 2
1 1
2 4 158
1 3
n
n
n
? ?
(12 + n
2
) –(6+n) +n(2n–4)=158
3n
2
 –5n + 6 –158 = 0
3n
2
 – 5n – 152 = 0
3n
2
 – 24n + 19n – 152 = 0
(3n + 19) (n–8) = 0
? n = 8
? ?
b.c 10 ?
? ?
Q.2 A survey shows that 73% of the persons working in an office like coffee, whereas 65%
like tea. If x denotes the percentage of them, who like both coffee and tea, then x
cannot be:
(1) 63 (2) 54 (3) 38 (4) 36
Sol. 4
C ? ?Coffee & T ? ?Tea
n(C) = 73, n(T) = 65
n(coffee) = 
73
100
n(tea) = 
65
100
? ? ? n T C = 
100
x
? ? ? n C T = n(C) + n(T) – x ? 100
= 73 + 65 – x ? 100
? ?x ? 38
? 73 – x ? 0 ? x ? 73
? 65 – x ? 0 ? x ? 65
? ? 38 x 65
, x = 36
x ? min(n(C), n(T)) ? 38 ? x ? 65
JEE Main 2020 Paper
         5
th
 September 2020 | (Shift-1), Maths     Page | 2
Q.3 The mean and variance of 7 observations are 8 and 16, respectively. If five observa-
tions are 2,4,10,12,14, then the absolute difference of the remaining two observations
is:
(1) 1 (2) 4 (3) 3 (4) 2
Sol. 4
Var(x) = 
? ?
2
2
i
x
x
n
?
?
16 = 
2 2 2 2 2 2
1 2 4 5 6 7
64
7
x x x x x x ? ? ? ? ?
?
80 × 7 = x
1
2
+
2 2 2
2 3 7
x x ..... x ? ? ?
Now, 
2 2 2 2
6 7 1 5
560 ? ? ? ? x x (x ......x )
2 2
6 7
560 4 16 100 144 196 x x ( ) ? ? ? ? ? ? ?
2 2
6 7
100 x x ? ? ......(1)
Now, 
1 2 7
7
x x .... x ? ? ?
 = 8
x
6
 + x
7
 = 14 ......(2)
from (1) & (2)
(x
6
 + x
7
)
2
 – 2x
6
 
x
7
 = 100
2x
6
x
7
 = 96 ?  x
6
 x
7
 = 48 ......(3)
Now, |x
6
 – x
7
| = 
? ?
2
6 7 6 7
4 ? ? x x x x
= 
196 192 2 ? ?
Q.4 If 2
10
+2
9
.3
1
+2
8
.3
2
+.....+2.3
9
+3
10
=S-2
11
, then S is equal to:
(1) 3
11
(2) 
11
10
3
2
2
? (3) 2.3
11
(4) 3
11 
—2
12
Sol. 1
let
S’ = 2
10
 + 2
9
 3
1
 + 2
8
 3
2
 +-----+2.3
9
 + 3
10
3 '
2
?S
 = 2
9
 × 3
1
 + 2
8
. 3
2
 +---- +3
10
 
11
3
2
?
__________________________________
11
10
' 3
2
2 2
?
? ?
S
S’ = 3
11
 –2
11
Now S
’
 = S –2
11
 S = 3
11
Page 3


JEE Main 2020 Paper
         5
th
 September 2020 | (Shift-1), Maths     Page | 1
Date : 5
th
 September 2020
Time : 09 : 00 am - 12 : 00 pm
Subject : Maths
Q.1 If the volume of a parallelopiped, whose coterminuous edges are given by the vectors
ˆ ˆ ˆ ˆ ˆ ˆ
a i j nk, b 2i 4j nk ? ? ? ? ? ?
?
?
and 
? ?
ˆ ˆ ˆ
c i nj 3k n 0 , ? ? ? ?
?
is 158 cu. units, then:
(1) a
?
.c
?
=17 (2) b
?
.c
?
=10 (3) n=9 (4) n=7
Sol. 2
1 1
2 4 158
1 3
n
n
n
? ?
(12 + n
2
) –(6+n) +n(2n–4)=158
3n
2
 –5n + 6 –158 = 0
3n
2
 – 5n – 152 = 0
3n
2
 – 24n + 19n – 152 = 0
(3n + 19) (n–8) = 0
? n = 8
? ?
b.c 10 ?
? ?
Q.2 A survey shows that 73% of the persons working in an office like coffee, whereas 65%
like tea. If x denotes the percentage of them, who like both coffee and tea, then x
cannot be:
(1) 63 (2) 54 (3) 38 (4) 36
Sol. 4
C ? ?Coffee & T ? ?Tea
n(C) = 73, n(T) = 65
n(coffee) = 
73
100
n(tea) = 
65
100
? ? ? n T C = 
100
x
? ? ? n C T = n(C) + n(T) – x ? 100
= 73 + 65 – x ? 100
? ?x ? 38
? 73 – x ? 0 ? x ? 73
? 65 – x ? 0 ? x ? 65
? ? 38 x 65
, x = 36
x ? min(n(C), n(T)) ? 38 ? x ? 65
JEE Main 2020 Paper
         5
th
 September 2020 | (Shift-1), Maths     Page | 2
Q.3 The mean and variance of 7 observations are 8 and 16, respectively. If five observa-
tions are 2,4,10,12,14, then the absolute difference of the remaining two observations
is:
(1) 1 (2) 4 (3) 3 (4) 2
Sol. 4
Var(x) = 
? ?
2
2
i
x
x
n
?
?
16 = 
2 2 2 2 2 2
1 2 4 5 6 7
64
7
x x x x x x ? ? ? ? ?
?
80 × 7 = x
1
2
+
2 2 2
2 3 7
x x ..... x ? ? ?
Now, 
2 2 2 2
6 7 1 5
560 ? ? ? ? x x (x ......x )
2 2
6 7
560 4 16 100 144 196 x x ( ) ? ? ? ? ? ? ?
2 2
6 7
100 x x ? ? ......(1)
Now, 
1 2 7
7
x x .... x ? ? ?
 = 8
x
6
 + x
7
 = 14 ......(2)
from (1) & (2)
(x
6
 + x
7
)
2
 – 2x
6
 
x
7
 = 100
2x
6
x
7
 = 96 ?  x
6
 x
7
 = 48 ......(3)
Now, |x
6
 – x
7
| = 
? ?
2
6 7 6 7
4 ? ? x x x x
= 
196 192 2 ? ?
Q.4 If 2
10
+2
9
.3
1
+2
8
.3
2
+.....+2.3
9
+3
10
=S-2
11
, then S is equal to:
(1) 3
11
(2) 
11
10
3
2
2
? (3) 2.3
11
(4) 3
11 
—2
12
Sol. 1
let
S’ = 2
10
 + 2
9
 3
1
 + 2
8
 3
2
 +-----+2.3
9
 + 3
10
3 '
2
?S
 = 2
9
 × 3
1
 + 2
8
. 3
2
 +---- +3
10
 
11
3
2
?
__________________________________
11
10
' 3
2
2 2
?
? ?
S
S’ = 3
11
 –2
11
Now S
’
 = S –2
11
 S = 3
11
JEE Main 2020 Paper
         5
th
 September 2020 | (Shift-1), Maths     Page | 3
Q.5 If 3
2 sin2 ? ?-1
,14 and 3
4-2 sin2 ?
are the first three terms of an A.P. for some ? , then the sixth
term of this A.P. is:
(1) 65 (2) 81 (3) 78 (4) 66
Sol. 4
28 = 3
2sin2 ? – 1
 + 3
4 –2 sin2 ?
28 = 
sin 2
sin 2
9 81
3 9
?
?
?
Let 9
sin2 ? ?
= t
28 = 
81
3
?
t
t
t
2
 – 84t + 243 = 0
t
2
 – 81t – 3t + 243 = 0
t(t – 81) – 3(t – 81) = 0
(t – 81) (t – 3) = 0
t = 81, 3
9
sin2 ?
 = 9
2
 or 3
sin2 ? = 1/2, 2 (rejected)
First term a = 3
2 sin2 ? ?-1
a = 1
Second term = 14
? Common difference d = 13
T
6
 = a + 5d
T
6
 = 1 + 5 × 13 = 66
Q.6 If the common tangent to the parabolas, y
2 
= 4x and x
2 
= 4y also touches the circle,
x
2
+y
2 
= c
2
, then c is equal to:
(1) 
1
2
(2) 
1
4
(3) 
1
2
(4) 
1
2 2
Sol. 3
y = mx + 
1
m
x
2
 =
1
4 mx
m
? ?
?
? ?
? ?
x
2
 –4mx 
4
m
? = 0
D = 0
16m
2
 + 
16
m
 = 0
3
1
16
m
m
? ?
?
? ?
? ?
? ?
 = 0
m = –1
? y + x =–1
Now, 
1
2
?
?|c|
c = ±
1
2
Page 4


JEE Main 2020 Paper
         5
th
 September 2020 | (Shift-1), Maths     Page | 1
Date : 5
th
 September 2020
Time : 09 : 00 am - 12 : 00 pm
Subject : Maths
Q.1 If the volume of a parallelopiped, whose coterminuous edges are given by the vectors
ˆ ˆ ˆ ˆ ˆ ˆ
a i j nk, b 2i 4j nk ? ? ? ? ? ?
?
?
and 
? ?
ˆ ˆ ˆ
c i nj 3k n 0 , ? ? ? ?
?
is 158 cu. units, then:
(1) a
?
.c
?
=17 (2) b
?
.c
?
=10 (3) n=9 (4) n=7
Sol. 2
1 1
2 4 158
1 3
n
n
n
? ?
(12 + n
2
) –(6+n) +n(2n–4)=158
3n
2
 –5n + 6 –158 = 0
3n
2
 – 5n – 152 = 0
3n
2
 – 24n + 19n – 152 = 0
(3n + 19) (n–8) = 0
? n = 8
? ?
b.c 10 ?
? ?
Q.2 A survey shows that 73% of the persons working in an office like coffee, whereas 65%
like tea. If x denotes the percentage of them, who like both coffee and tea, then x
cannot be:
(1) 63 (2) 54 (3) 38 (4) 36
Sol. 4
C ? ?Coffee & T ? ?Tea
n(C) = 73, n(T) = 65
n(coffee) = 
73
100
n(tea) = 
65
100
? ? ? n T C = 
100
x
? ? ? n C T = n(C) + n(T) – x ? 100
= 73 + 65 – x ? 100
? ?x ? 38
? 73 – x ? 0 ? x ? 73
? 65 – x ? 0 ? x ? 65
? ? 38 x 65
, x = 36
x ? min(n(C), n(T)) ? 38 ? x ? 65
JEE Main 2020 Paper
         5
th
 September 2020 | (Shift-1), Maths     Page | 2
Q.3 The mean and variance of 7 observations are 8 and 16, respectively. If five observa-
tions are 2,4,10,12,14, then the absolute difference of the remaining two observations
is:
(1) 1 (2) 4 (3) 3 (4) 2
Sol. 4
Var(x) = 
? ?
2
2
i
x
x
n
?
?
16 = 
2 2 2 2 2 2
1 2 4 5 6 7
64
7
x x x x x x ? ? ? ? ?
?
80 × 7 = x
1
2
+
2 2 2
2 3 7
x x ..... x ? ? ?
Now, 
2 2 2 2
6 7 1 5
560 ? ? ? ? x x (x ......x )
2 2
6 7
560 4 16 100 144 196 x x ( ) ? ? ? ? ? ? ?
2 2
6 7
100 x x ? ? ......(1)
Now, 
1 2 7
7
x x .... x ? ? ?
 = 8
x
6
 + x
7
 = 14 ......(2)
from (1) & (2)
(x
6
 + x
7
)
2
 – 2x
6
 
x
7
 = 100
2x
6
x
7
 = 96 ?  x
6
 x
7
 = 48 ......(3)
Now, |x
6
 – x
7
| = 
? ?
2
6 7 6 7
4 ? ? x x x x
= 
196 192 2 ? ?
Q.4 If 2
10
+2
9
.3
1
+2
8
.3
2
+.....+2.3
9
+3
10
=S-2
11
, then S is equal to:
(1) 3
11
(2) 
11
10
3
2
2
? (3) 2.3
11
(4) 3
11 
—2
12
Sol. 1
let
S’ = 2
10
 + 2
9
 3
1
 + 2
8
 3
2
 +-----+2.3
9
 + 3
10
3 '
2
?S
 = 2
9
 × 3
1
 + 2
8
. 3
2
 +---- +3
10
 
11
3
2
?
__________________________________
11
10
' 3
2
2 2
?
? ?
S
S’ = 3
11
 –2
11
Now S
’
 = S –2
11
 S = 3
11
JEE Main 2020 Paper
         5
th
 September 2020 | (Shift-1), Maths     Page | 3
Q.5 If 3
2 sin2 ? ?-1
,14 and 3
4-2 sin2 ?
are the first three terms of an A.P. for some ? , then the sixth
term of this A.P. is:
(1) 65 (2) 81 (3) 78 (4) 66
Sol. 4
28 = 3
2sin2 ? – 1
 + 3
4 –2 sin2 ?
28 = 
sin 2
sin 2
9 81
3 9
?
?
?
Let 9
sin2 ? ?
= t
28 = 
81
3
?
t
t
t
2
 – 84t + 243 = 0
t
2
 – 81t – 3t + 243 = 0
t(t – 81) – 3(t – 81) = 0
(t – 81) (t – 3) = 0
t = 81, 3
9
sin2 ?
 = 9
2
 or 3
sin2 ? = 1/2, 2 (rejected)
First term a = 3
2 sin2 ? ?-1
a = 1
Second term = 14
? Common difference d = 13
T
6
 = a + 5d
T
6
 = 1 + 5 × 13 = 66
Q.6 If the common tangent to the parabolas, y
2 
= 4x and x
2 
= 4y also touches the circle,
x
2
+y
2 
= c
2
, then c is equal to:
(1) 
1
2
(2) 
1
4
(3) 
1
2
(4) 
1
2 2
Sol. 3
y = mx + 
1
m
x
2
 =
1
4 mx
m
? ?
?
? ?
? ?
x
2
 –4mx 
4
m
? = 0
D = 0
16m
2
 + 
16
m
 = 0
3
1
16
m
m
? ?
?
? ?
? ?
? ?
 = 0
m = –1
? y + x =–1
Now, 
1
2
?
?|c|
c = ±
1
2
JEE Main 2020 Paper
         5
th
 September 2020 | (Shift-1), Maths     Page | 4
Q.7 If the minimum and the maximum values of the function f : , R
4 2
? ? ? ?
?
? ?
? ?
, defined by y
? ?
2 2
2 2
sin 1 sin 1
f cos 1 cos 1
12 10 2
? ? ? ? ?
? ? ? ? ? ? ?
?
 are m and M respectively, then the ordered pair (m,M)
is  equal to :
(1) (0,4) (2) (-4,0)
(3) (-4,4) (4) ? ?
0,2 2
Sol. 2
f( ?) = 
2 2
2 2
1 1
1 1
12 10 2
sin sin
cos cos
? ? ? ? ?
? ? ? ? ?
?
C
1
 ? C
1
 –C
2
, C
3
 ? C
3
 + C
2
2 2
2 2
1 1
1 1
2 10 8
sin sin
cos cos
? ? ? ? ?
? ? ? ? ?
C
2
 ?  C
2
 – C
3
2
2
1 1
1 1
2 2 8
sin
cos
? ? ?
? ? ?
1(2cos
2
?–8) + (8+2cos
2
?) –4sin
2
?
f( ?) = 4cos2 ?
Q.8 Let R ? ? . The system of linear equations
2x
1
-4x
2
+
?
x
3
=1
x
1
-6x
2
+x
3
=2
?
x
1
-10x
2
+4x
3
=3
is inconsistent for:
(1) exactly two values of 
?
(2) exactly one negative value of 
?
.
(3) every value of 
?
.
(4) exactly one positive value of 
?
.
Sol. 2
Page 5


JEE Main 2020 Paper
         5
th
 September 2020 | (Shift-1), Maths     Page | 1
Date : 5
th
 September 2020
Time : 09 : 00 am - 12 : 00 pm
Subject : Maths
Q.1 If the volume of a parallelopiped, whose coterminuous edges are given by the vectors
ˆ ˆ ˆ ˆ ˆ ˆ
a i j nk, b 2i 4j nk ? ? ? ? ? ?
?
?
and 
? ?
ˆ ˆ ˆ
c i nj 3k n 0 , ? ? ? ?
?
is 158 cu. units, then:
(1) a
?
.c
?
=17 (2) b
?
.c
?
=10 (3) n=9 (4) n=7
Sol. 2
1 1
2 4 158
1 3
n
n
n
? ?
(12 + n
2
) –(6+n) +n(2n–4)=158
3n
2
 –5n + 6 –158 = 0
3n
2
 – 5n – 152 = 0
3n
2
 – 24n + 19n – 152 = 0
(3n + 19) (n–8) = 0
? n = 8
? ?
b.c 10 ?
? ?
Q.2 A survey shows that 73% of the persons working in an office like coffee, whereas 65%
like tea. If x denotes the percentage of them, who like both coffee and tea, then x
cannot be:
(1) 63 (2) 54 (3) 38 (4) 36
Sol. 4
C ? ?Coffee & T ? ?Tea
n(C) = 73, n(T) = 65
n(coffee) = 
73
100
n(tea) = 
65
100
? ? ? n T C = 
100
x
? ? ? n C T = n(C) + n(T) – x ? 100
= 73 + 65 – x ? 100
? ?x ? 38
? 73 – x ? 0 ? x ? 73
? 65 – x ? 0 ? x ? 65
? ? 38 x 65
, x = 36
x ? min(n(C), n(T)) ? 38 ? x ? 65
JEE Main 2020 Paper
         5
th
 September 2020 | (Shift-1), Maths     Page | 2
Q.3 The mean and variance of 7 observations are 8 and 16, respectively. If five observa-
tions are 2,4,10,12,14, then the absolute difference of the remaining two observations
is:
(1) 1 (2) 4 (3) 3 (4) 2
Sol. 4
Var(x) = 
? ?
2
2
i
x
x
n
?
?
16 = 
2 2 2 2 2 2
1 2 4 5 6 7
64
7
x x x x x x ? ? ? ? ?
?
80 × 7 = x
1
2
+
2 2 2
2 3 7
x x ..... x ? ? ?
Now, 
2 2 2 2
6 7 1 5
560 ? ? ? ? x x (x ......x )
2 2
6 7
560 4 16 100 144 196 x x ( ) ? ? ? ? ? ? ?
2 2
6 7
100 x x ? ? ......(1)
Now, 
1 2 7
7
x x .... x ? ? ?
 = 8
x
6
 + x
7
 = 14 ......(2)
from (1) & (2)
(x
6
 + x
7
)
2
 – 2x
6
 
x
7
 = 100
2x
6
x
7
 = 96 ?  x
6
 x
7
 = 48 ......(3)
Now, |x
6
 – x
7
| = 
? ?
2
6 7 6 7
4 ? ? x x x x
= 
196 192 2 ? ?
Q.4 If 2
10
+2
9
.3
1
+2
8
.3
2
+.....+2.3
9
+3
10
=S-2
11
, then S is equal to:
(1) 3
11
(2) 
11
10
3
2
2
? (3) 2.3
11
(4) 3
11 
—2
12
Sol. 1
let
S’ = 2
10
 + 2
9
 3
1
 + 2
8
 3
2
 +-----+2.3
9
 + 3
10
3 '
2
?S
 = 2
9
 × 3
1
 + 2
8
. 3
2
 +---- +3
10
 
11
3
2
?
__________________________________
11
10
' 3
2
2 2
?
? ?
S
S’ = 3
11
 –2
11
Now S
’
 = S –2
11
 S = 3
11
JEE Main 2020 Paper
         5
th
 September 2020 | (Shift-1), Maths     Page | 3
Q.5 If 3
2 sin2 ? ?-1
,14 and 3
4-2 sin2 ?
are the first three terms of an A.P. for some ? , then the sixth
term of this A.P. is:
(1) 65 (2) 81 (3) 78 (4) 66
Sol. 4
28 = 3
2sin2 ? – 1
 + 3
4 –2 sin2 ?
28 = 
sin 2
sin 2
9 81
3 9
?
?
?
Let 9
sin2 ? ?
= t
28 = 
81
3
?
t
t
t
2
 – 84t + 243 = 0
t
2
 – 81t – 3t + 243 = 0
t(t – 81) – 3(t – 81) = 0
(t – 81) (t – 3) = 0
t = 81, 3
9
sin2 ?
 = 9
2
 or 3
sin2 ? = 1/2, 2 (rejected)
First term a = 3
2 sin2 ? ?-1
a = 1
Second term = 14
? Common difference d = 13
T
6
 = a + 5d
T
6
 = 1 + 5 × 13 = 66
Q.6 If the common tangent to the parabolas, y
2 
= 4x and x
2 
= 4y also touches the circle,
x
2
+y
2 
= c
2
, then c is equal to:
(1) 
1
2
(2) 
1
4
(3) 
1
2
(4) 
1
2 2
Sol. 3
y = mx + 
1
m
x
2
 =
1
4 mx
m
? ?
?
? ?
? ?
x
2
 –4mx 
4
m
? = 0
D = 0
16m
2
 + 
16
m
 = 0
3
1
16
m
m
? ?
?
? ?
? ?
? ?
 = 0
m = –1
? y + x =–1
Now, 
1
2
?
?|c|
c = ±
1
2
JEE Main 2020 Paper
         5
th
 September 2020 | (Shift-1), Maths     Page | 4
Q.7 If the minimum and the maximum values of the function f : , R
4 2
? ? ? ?
?
? ?
? ?
, defined by y
? ?
2 2
2 2
sin 1 sin 1
f cos 1 cos 1
12 10 2
? ? ? ? ?
? ? ? ? ? ? ?
?
 are m and M respectively, then the ordered pair (m,M)
is  equal to :
(1) (0,4) (2) (-4,0)
(3) (-4,4) (4) ? ?
0,2 2
Sol. 2
f( ?) = 
2 2
2 2
1 1
1 1
12 10 2
sin sin
cos cos
? ? ? ? ?
? ? ? ? ?
?
C
1
 ? C
1
 –C
2
, C
3
 ? C
3
 + C
2
2 2
2 2
1 1
1 1
2 10 8
sin sin
cos cos
? ? ? ? ?
? ? ? ? ?
C
2
 ?  C
2
 – C
3
2
2
1 1
1 1
2 2 8
sin
cos
? ? ?
? ? ?
1(2cos
2
?–8) + (8+2cos
2
?) –4sin
2
?
f( ?) = 4cos2 ?
Q.8 Let R ? ? . The system of linear equations
2x
1
-4x
2
+
?
x
3
=1
x
1
-6x
2
+x
3
=2
?
x
1
-10x
2
+4x
3
=3
is inconsistent for:
(1) exactly two values of 
?
(2) exactly one negative value of 
?
.
(3) every value of 
?
.
(4) exactly one positive value of 
?
.
Sol. 2
JEE Main 2020 Paper
         5
th
 September 2020 | (Shift-1), Maths     Page | 5
D = 
2 4
1 6 1
10 4
?
?
?
?
?
= 2(3 ? + 2)( ? – 3)
D
1
 = –2( ? – 3)
D
2
 = –2( ? + 1)( ? – 3)
D
3
 = –2( ? – 3)
When ? = 3, then
D = D
1
 = D
2
 = D
3
 = 0
? Infinite many solution
When ? = –2/3 then D
1
, D
2
, D
3
 none of them is zero so equations are inconsistent
? ? = –2/3
Q.9 If the point P on the curve, 4x
2
+5y
2
=20 is farthest from the point Q(0, -4), then PQ
2
 is
equal to:
(1) 48 (2) 29 (3) 21 (4) 36
Sol. 4
Given ellipse is 
2
x
5
 + 
2
y
4
 = 1
Let point P is ? ?
5 2 cos , sin ? ?
(PQ)
2
 = 5cos
2
? + 4(sin ? + 2)
2
(PQ)
2
 = cos
2
? + 16 sin ? + 20
(PQ)
2
 = –sin
2
? + 16 sin ? + 21
= 85 – (sin ? – 8)
2
Will be maximum when sin ? = 1
(PQ)
2
max
 = 85 – 49 = 36
Q.10 The product of the roots of the equation 9x
2
-18|x|+5=0 is :
(1) 
25
81
(2) 
5
9
(3) 
5
27
(4) 
25
9
Sol. 1
Let |x| = t
9t
2
 – 18t +5 = 0
9t
2
 – 15t –3t + 5 = 0
(3t –5) (3t–1) = 0
|x| = 
5 1
3 3
,
? x = 
5 5 1 1
3 3 3 3
, , ,
? ?
? P = 
25
81
Read More
357 docs|148 tests
Related Searches

Important questions

,

Exam

,

JEE Main 2020 Mathematics September 5 Shift 1 Paper & Solutions | Mock Tests for JEE Main and Advanced 2025

,

past year papers

,

Sample Paper

,

Viva Questions

,

Extra Questions

,

ppt

,

video lectures

,

Previous Year Questions with Solutions

,

study material

,

MCQs

,

practice quizzes

,

JEE Main 2020 Mathematics September 5 Shift 1 Paper & Solutions | Mock Tests for JEE Main and Advanced 2025

,

Semester Notes

,

Summary

,

shortcuts and tricks

,

Free

,

mock tests for examination

,

pdf

,

Objective type Questions

,

JEE Main 2020 Mathematics September 5 Shift 1 Paper & Solutions | Mock Tests for JEE Main and Advanced 2025

;