JEE Exam  >  JEE Notes  >  DPP: Daily Practice Problems for JEE Main & Advanced  >  DPP for JEE: Daily Practice Problems- States of Matter (Solutions)

States of Matter Practice Questions - DPP for JEE

Download, print and study this document offline
Please wait while the PDF view is loading
 Page 1


1. (a) From the graph we can see the correct order of pressures  p
1
 > p
3 
>
p
2
2. (b) Gases become cooler during Joule Thomson’s expansion only if they are
below a certain temperature known as inversion temperature (T
i
). The
inversion temperature is characteristic of each gas and is given by
,   where R is gas constant
Given a = 0.244 atm L
2
 mol
–2
b = 0.027 L mol
–1
R = 0.0821 L atm deg
–1
 mol
–1
? 
3. (d)
4. (d) Let the mass of methane and oxygen = m gm.
Mole fraction of O
2
= 
=  =  = 
Partial pressure of O
2
 = Total pressure × mole fraction of O
2
, = P × 
 = 
5. (c) The expression of root mean square speed is
Hence,
Page 2


1. (a) From the graph we can see the correct order of pressures  p
1
 > p
3 
>
p
2
2. (b) Gases become cooler during Joule Thomson’s expansion only if they are
below a certain temperature known as inversion temperature (T
i
). The
inversion temperature is characteristic of each gas and is given by
,   where R is gas constant
Given a = 0.244 atm L
2
 mol
–2
b = 0.027 L mol
–1
R = 0.0821 L atm deg
–1
 mol
–1
? 
3. (d)
4. (d) Let the mass of methane and oxygen = m gm.
Mole fraction of O
2
= 
=  =  = 
Partial pressure of O
2
 = Total pressure × mole fraction of O
2
, = P × 
 = 
5. (c) The expression of root mean square speed is
Hence,
6. (a) Given T = 27°C = 27 + 273 = 300 K
V = 10.0 L
Mass of He = 0.4 g
Mass of oxygen = 1.6 g
Mass of nitrogen = 1.4 g
n He = 0.4/4 = 0.1
n O
2
 = 1.6/32 = 0.05
n N
2
 = 1.4/28 = 0.05
n total = n He + n O
2
 + n N
2
 = 0.1 + 0.05 + 0.05 = 0.2
P =  atm
7. (b) Rate of diffusion ?
 Molecular mass of HCl > Molecular mass of NH
3
 HCl diffuses at slower rate and white ammonium chloride is
first formed near HCl bottle.
8. (b)    
Mean molar mass = 
= 
9. (a)
Page 3


1. (a) From the graph we can see the correct order of pressures  p
1
 > p
3 
>
p
2
2. (b) Gases become cooler during Joule Thomson’s expansion only if they are
below a certain temperature known as inversion temperature (T
i
). The
inversion temperature is characteristic of each gas and is given by
,   where R is gas constant
Given a = 0.244 atm L
2
 mol
–2
b = 0.027 L mol
–1
R = 0.0821 L atm deg
–1
 mol
–1
? 
3. (d)
4. (d) Let the mass of methane and oxygen = m gm.
Mole fraction of O
2
= 
=  =  = 
Partial pressure of O
2
 = Total pressure × mole fraction of O
2
, = P × 
 = 
5. (c) The expression of root mean square speed is
Hence,
6. (a) Given T = 27°C = 27 + 273 = 300 K
V = 10.0 L
Mass of He = 0.4 g
Mass of oxygen = 1.6 g
Mass of nitrogen = 1.4 g
n He = 0.4/4 = 0.1
n O
2
 = 1.6/32 = 0.05
n N
2
 = 1.4/28 = 0.05
n total = n He + n O
2
 + n N
2
 = 0.1 + 0.05 + 0.05 = 0.2
P =  atm
7. (b) Rate of diffusion ?
 Molecular mass of HCl > Molecular mass of NH
3
 HCl diffuses at slower rate and white ammonium chloride is
first formed near HCl bottle.
8. (b)    
Mean molar mass = 
= 
9. (a)
10. (c) According to Avogadro’s law "At same temperature and pressure, 
Volume ? no. of moles"
 = 
Q = =   = 16 : 1
: 2
11. (a) Given, 
According to Graham's law of diffusion for two different gases.
? x = 8
? Fraction of O
2
 = 1/8
12. (c) As temperature rises the most probable speed increases and the
fraction of molecules possessing most probable speed decreases.
13. (b) According to Boyle's law, PV = constant
?  log P + log V = constant
log P = – log V + constant
Hence, the plot of log P vs log V is straight line with negative slope.
14. (a)
Stoichoimetry ratio is 1 : 2
AT STP, P = 1 atm, T = 273 K, R = 0.0821
Page 4


1. (a) From the graph we can see the correct order of pressures  p
1
 > p
3 
>
p
2
2. (b) Gases become cooler during Joule Thomson’s expansion only if they are
below a certain temperature known as inversion temperature (T
i
). The
inversion temperature is characteristic of each gas and is given by
,   where R is gas constant
Given a = 0.244 atm L
2
 mol
–2
b = 0.027 L mol
–1
R = 0.0821 L atm deg
–1
 mol
–1
? 
3. (d)
4. (d) Let the mass of methane and oxygen = m gm.
Mole fraction of O
2
= 
=  =  = 
Partial pressure of O
2
 = Total pressure × mole fraction of O
2
, = P × 
 = 
5. (c) The expression of root mean square speed is
Hence,
6. (a) Given T = 27°C = 27 + 273 = 300 K
V = 10.0 L
Mass of He = 0.4 g
Mass of oxygen = 1.6 g
Mass of nitrogen = 1.4 g
n He = 0.4/4 = 0.1
n O
2
 = 1.6/32 = 0.05
n N
2
 = 1.4/28 = 0.05
n total = n He + n O
2
 + n N
2
 = 0.1 + 0.05 + 0.05 = 0.2
P =  atm
7. (b) Rate of diffusion ?
 Molecular mass of HCl > Molecular mass of NH
3
 HCl diffuses at slower rate and white ammonium chloride is
first formed near HCl bottle.
8. (b)    
Mean molar mass = 
= 
9. (a)
10. (c) According to Avogadro’s law "At same temperature and pressure, 
Volume ? no. of moles"
 = 
Q = =   = 16 : 1
: 2
11. (a) Given, 
According to Graham's law of diffusion for two different gases.
? x = 8
? Fraction of O
2
 = 1/8
12. (c) As temperature rises the most probable speed increases and the
fraction of molecules possessing most probable speed decreases.
13. (b) According to Boyle's law, PV = constant
?  log P + log V = constant
log P = – log V + constant
Hence, the plot of log P vs log V is straight line with negative slope.
14. (a)
Stoichoimetry ratio is 1 : 2
AT STP, P = 1 atm, T = 273 K, R = 0.0821
Initial moles of CO
2;
 n(CO
2
initial) 
= 0.022 mole
In final mixture no. of moles; n(CO
2
/CO mixture)
Increase in volume is by = 0.031 – 0.022
= 0.009 mole of gas
Final no. of moles of CO i.e. n
(CO final)
n
(CO final)
 = 2n
(CO2 initial)
 – n
(CO2 final)
= 2(0.022 – n
(CO2 final)
...(i)
n
(CO final)
 = 0.044 – 2n
(CO2 final)
...(ii)
? Now,  n
(CO final)
 + n
(CO final)
 = 0.031
n
(CO2 final)
 = 0.031 – n
(CO final)
...(ii)
Substituting (ii) in eq. (i)
n
(CO final)
 = 0.044 – 2[0.031 – n
(CO final)]
n
(CO final)
 = 0.044 – 0.062 + 2n
(CO final)
n
(CO final)
 = 0.018 mol. Volume of 
  = 0.40 Litre
and volume of CO
2
 = 0.7 litre – 0.4 litre
= 0.3 litre
?  CO
2 
= 300 mL, CO = 400 mL
15. (c) Most probable speed (C*) = 
Average Speed 
Page 5


1. (a) From the graph we can see the correct order of pressures  p
1
 > p
3 
>
p
2
2. (b) Gases become cooler during Joule Thomson’s expansion only if they are
below a certain temperature known as inversion temperature (T
i
). The
inversion temperature is characteristic of each gas and is given by
,   where R is gas constant
Given a = 0.244 atm L
2
 mol
–2
b = 0.027 L mol
–1
R = 0.0821 L atm deg
–1
 mol
–1
? 
3. (d)
4. (d) Let the mass of methane and oxygen = m gm.
Mole fraction of O
2
= 
=  =  = 
Partial pressure of O
2
 = Total pressure × mole fraction of O
2
, = P × 
 = 
5. (c) The expression of root mean square speed is
Hence,
6. (a) Given T = 27°C = 27 + 273 = 300 K
V = 10.0 L
Mass of He = 0.4 g
Mass of oxygen = 1.6 g
Mass of nitrogen = 1.4 g
n He = 0.4/4 = 0.1
n O
2
 = 1.6/32 = 0.05
n N
2
 = 1.4/28 = 0.05
n total = n He + n O
2
 + n N
2
 = 0.1 + 0.05 + 0.05 = 0.2
P =  atm
7. (b) Rate of diffusion ?
 Molecular mass of HCl > Molecular mass of NH
3
 HCl diffuses at slower rate and white ammonium chloride is
first formed near HCl bottle.
8. (b)    
Mean molar mass = 
= 
9. (a)
10. (c) According to Avogadro’s law "At same temperature and pressure, 
Volume ? no. of moles"
 = 
Q = =   = 16 : 1
: 2
11. (a) Given, 
According to Graham's law of diffusion for two different gases.
? x = 8
? Fraction of O
2
 = 1/8
12. (c) As temperature rises the most probable speed increases and the
fraction of molecules possessing most probable speed decreases.
13. (b) According to Boyle's law, PV = constant
?  log P + log V = constant
log P = – log V + constant
Hence, the plot of log P vs log V is straight line with negative slope.
14. (a)
Stoichoimetry ratio is 1 : 2
AT STP, P = 1 atm, T = 273 K, R = 0.0821
Initial moles of CO
2;
 n(CO
2
initial) 
= 0.022 mole
In final mixture no. of moles; n(CO
2
/CO mixture)
Increase in volume is by = 0.031 – 0.022
= 0.009 mole of gas
Final no. of moles of CO i.e. n
(CO final)
n
(CO final)
 = 2n
(CO2 initial)
 – n
(CO2 final)
= 2(0.022 – n
(CO2 final)
...(i)
n
(CO final)
 = 0.044 – 2n
(CO2 final)
...(ii)
? Now,  n
(CO final)
 + n
(CO final)
 = 0.031
n
(CO2 final)
 = 0.031 – n
(CO final)
...(ii)
Substituting (ii) in eq. (i)
n
(CO final)
 = 0.044 – 2[0.031 – n
(CO final)]
n
(CO final)
 = 0.044 – 0.062 + 2n
(CO final)
n
(CO final)
 = 0.018 mol. Volume of 
  = 0.40 Litre
and volume of CO
2
 = 0.7 litre – 0.4 litre
= 0.3 litre
?  CO
2 
= 300 mL, CO = 400 mL
15. (c) Most probable speed (C*) = 
Average Speed 
Root mean square velocity (C) =
16. (b) According to Graham’s Law Diffusion:
Since rate of diffusion =  ?    
or   
=  = 
 Mol. wt = 2 × V.D
? 
On calculating,
V
2
 = 14.1
17. (b) Compressibility factor 
(For one mole of real gas)
van der Waals equation 
At low pressure, volume is very large and hence correction term b can
be neglected in comparison to very large volume of V.
i.e. 
Read More
174 docs

Top Courses for JEE

174 docs
Download as PDF
Explore Courses for JEE exam

Top Courses for JEE

Signup for Free!
Signup to see your scores go up within 7 days! Learn & Practice with 1000+ FREE Notes, Videos & Tests.
10M+ students study on EduRev
Related Searches

past year papers

,

shortcuts and tricks

,

Objective type Questions

,

Previous Year Questions with Solutions

,

Important questions

,

Extra Questions

,

Semester Notes

,

study material

,

practice quizzes

,

Free

,

States of Matter Practice Questions - DPP for JEE

,

ppt

,

MCQs

,

Viva Questions

,

pdf

,

Summary

,

mock tests for examination

,

States of Matter Practice Questions - DPP for JEE

,

video lectures

,

Sample Paper

,

Exam

,

States of Matter Practice Questions - DPP for JEE

;