JEE Exam  >  JEE Notes  >  DPP: Daily Practice Problems for JEE Main & Advanced  >  DPP for JEE: Daily Practice Problems- Electrochemistry

Electrochemistry Practice Questions - DPP for JEE

Download, print and study this document offline
Please wait while the PDF view is loading
 Page 1


PART-I (Single Correct MCQs)
1. The mathematical expression for law of independent migration of ions
and Ostwald’s dilution law are given by
(a )
(b)
(c)
(d)
2. The equivalent conductance of  solution of a weak monobasic acid
is 8.0 mho cm
2
 and at infinite dilution is 400 mho cm
2
. The dissociation
constant of this acid is: (a) 1.25 × 10
–6
(b) 6.25 × 10
–4
(c) 1.25 × 10
–4
Page 2


PART-I (Single Correct MCQs)
1. The mathematical expression for law of independent migration of ions
and Ostwald’s dilution law are given by
(a )
(b)
(c)
(d)
2. The equivalent conductance of  solution of a weak monobasic acid
is 8.0 mho cm
2
 and at infinite dilution is 400 mho cm
2
. The dissociation
constant of this acid is: (a) 1.25 × 10
–6
(b) 6.25 × 10
–4
(c) 1.25 × 10
–4
(d) 1.25 × 10
–5
3. Molar ionic conductivities of a two-bivalent electrolytes x
2+
 and y
2–
 are
57 and 73 respectively. The molar conductivity of the solution formed
by them will be
(a) 130 S cm
2
 mol
–1
(b) 65 S cm
2
 mol
–1
(c) 260 S cm
2
 mol
–1
(d) 187 S cm
2
 mol
–1
4. If the E°
cell
 for a given reaction has a negative value, then which of the
following gives the correct relationships for the values of ?G° and K
eq
?
(a) ?G° > 0 ; K
eq
 > 1
(b) ?G° < 0 ; K
eq
 > 1
(c) ?G° < 0 ; K
eq
 < 1
(d) ?G° > 0 ; K
eq
 < 1
5. Standard electrode potentials are : Fe
+2
/Fe [ Eº = –0.44]; Fe
+3
/Fe
+2
  Eº =
+ 0.77 ; If Fe
+2
, Fe
+3
 and Fe blocks are kept together, then
(a) Fe
+3
 increases
(b) Fe
+3
 decreases
(c) remains unchanged
(d) Fe
+2
 decreases
6. An electrolytic cell contains a solution of Ag
2
SO
4
 and has platinum
electrodes. A current is passed until 1.6 gm of O
2
 has been liberated at
anode. The amount of silver deposited at cathode would be
(a) 107.88 g
(b) 1.6 g
(c) 0.8 g
(d) 21.60 g
7. For the cell reaction,
Page 3


PART-I (Single Correct MCQs)
1. The mathematical expression for law of independent migration of ions
and Ostwald’s dilution law are given by
(a )
(b)
(c)
(d)
2. The equivalent conductance of  solution of a weak monobasic acid
is 8.0 mho cm
2
 and at infinite dilution is 400 mho cm
2
. The dissociation
constant of this acid is: (a) 1.25 × 10
–6
(b) 6.25 × 10
–4
(c) 1.25 × 10
–4
(d) 1.25 × 10
–5
3. Molar ionic conductivities of a two-bivalent electrolytes x
2+
 and y
2–
 are
57 and 73 respectively. The molar conductivity of the solution formed
by them will be
(a) 130 S cm
2
 mol
–1
(b) 65 S cm
2
 mol
–1
(c) 260 S cm
2
 mol
–1
(d) 187 S cm
2
 mol
–1
4. If the E°
cell
 for a given reaction has a negative value, then which of the
following gives the correct relationships for the values of ?G° and K
eq
?
(a) ?G° > 0 ; K
eq
 > 1
(b) ?G° < 0 ; K
eq
 > 1
(c) ?G° < 0 ; K
eq
 < 1
(d) ?G° > 0 ; K
eq
 < 1
5. Standard electrode potentials are : Fe
+2
/Fe [ Eº = –0.44]; Fe
+3
/Fe
+2
  Eº =
+ 0.77 ; If Fe
+2
, Fe
+3
 and Fe blocks are kept together, then
(a) Fe
+3
 increases
(b) Fe
+3
 decreases
(c) remains unchanged
(d) Fe
+2
 decreases
6. An electrolytic cell contains a solution of Ag
2
SO
4
 and has platinum
electrodes. A current is passed until 1.6 gm of O
2
 has been liberated at
anode. The amount of silver deposited at cathode would be
(a) 107.88 g
(b) 1.6 g
(c) 0.8 g
(d) 21.60 g
7. For the cell reaction,
Cu
2+
 (C
1
, aq) + Zn(s) = Zn
2+
 (C
2
, aq) + Cu(s) of an electrochemical cell,
the change in free energy, ?G, at a given temperature is a function of
(a) ln (C
1
)
(b) ln (C
2
/C
1
)
(c) ln (C
2
)
(d) ln (C
1
 + C
2
)
8. The electrode potential  of a zinc electrode at 25°C with an
aqueous solution of 0.1 M ZnSO
4
 is [ = – 0.76 V. Assume 
 = 0.06 at 298 K].
(a) + 0.73
(b) – 0.79
(c) – 0.82
(d) – 0.70
9. A gas X at 1 atm is bubbled through a solution containing a mixture of
1 M Y
–
 and M Z
–
 at 25 °C. If the reduction potential of Z > Y > X, then,
(a) Y will oxidize X and not Z
(b) Y will oxidize Z and  not X
(c) Y will oxidize both X and Z
(d) Y will reduce both X and Z
10. For the electrochemical cell, 
= 0.44V and 
 
(X/X
–
) = 0.33V .
From this data one can deduce that
(a) M+X?M
+
+X
–
 is the spontaneous reaction
(b) M
+
+X
–
?M+X is the spontaneous reaction
(c) E
cell
 = 0.77 V
(d) E
cell
 = –0.77 V
11. Standard electrode potential data are useful for understanding the
Page 4


PART-I (Single Correct MCQs)
1. The mathematical expression for law of independent migration of ions
and Ostwald’s dilution law are given by
(a )
(b)
(c)
(d)
2. The equivalent conductance of  solution of a weak monobasic acid
is 8.0 mho cm
2
 and at infinite dilution is 400 mho cm
2
. The dissociation
constant of this acid is: (a) 1.25 × 10
–6
(b) 6.25 × 10
–4
(c) 1.25 × 10
–4
(d) 1.25 × 10
–5
3. Molar ionic conductivities of a two-bivalent electrolytes x
2+
 and y
2–
 are
57 and 73 respectively. The molar conductivity of the solution formed
by them will be
(a) 130 S cm
2
 mol
–1
(b) 65 S cm
2
 mol
–1
(c) 260 S cm
2
 mol
–1
(d) 187 S cm
2
 mol
–1
4. If the E°
cell
 for a given reaction has a negative value, then which of the
following gives the correct relationships for the values of ?G° and K
eq
?
(a) ?G° > 0 ; K
eq
 > 1
(b) ?G° < 0 ; K
eq
 > 1
(c) ?G° < 0 ; K
eq
 < 1
(d) ?G° > 0 ; K
eq
 < 1
5. Standard electrode potentials are : Fe
+2
/Fe [ Eº = –0.44]; Fe
+3
/Fe
+2
  Eº =
+ 0.77 ; If Fe
+2
, Fe
+3
 and Fe blocks are kept together, then
(a) Fe
+3
 increases
(b) Fe
+3
 decreases
(c) remains unchanged
(d) Fe
+2
 decreases
6. An electrolytic cell contains a solution of Ag
2
SO
4
 and has platinum
electrodes. A current is passed until 1.6 gm of O
2
 has been liberated at
anode. The amount of silver deposited at cathode would be
(a) 107.88 g
(b) 1.6 g
(c) 0.8 g
(d) 21.60 g
7. For the cell reaction,
Cu
2+
 (C
1
, aq) + Zn(s) = Zn
2+
 (C
2
, aq) + Cu(s) of an electrochemical cell,
the change in free energy, ?G, at a given temperature is a function of
(a) ln (C
1
)
(b) ln (C
2
/C
1
)
(c) ln (C
2
)
(d) ln (C
1
 + C
2
)
8. The electrode potential  of a zinc electrode at 25°C with an
aqueous solution of 0.1 M ZnSO
4
 is [ = – 0.76 V. Assume 
 = 0.06 at 298 K].
(a) + 0.73
(b) – 0.79
(c) – 0.82
(d) – 0.70
9. A gas X at 1 atm is bubbled through a solution containing a mixture of
1 M Y
–
 and M Z
–
 at 25 °C. If the reduction potential of Z > Y > X, then,
(a) Y will oxidize X and not Z
(b) Y will oxidize Z and  not X
(c) Y will oxidize both X and Z
(d) Y will reduce both X and Z
10. For the electrochemical cell, 
= 0.44V and 
 
(X/X
–
) = 0.33V .
From this data one can deduce that
(a) M+X?M
+
+X
–
 is the spontaneous reaction
(b) M
+
+X
–
?M+X is the spontaneous reaction
(c) E
cell
 = 0.77 V
(d) E
cell
 = –0.77 V
11. Standard electrode potential data are useful for understanding the
suitability of an oxidant in a redox titration. Some half cell reactions
and their standard potentials are given below:
  E° = 1.51 V
 E° = 1.38 V
E° = 0.77 V
E° = 1.40 V
Identify the only incorrect statement regarding the quantitative estimation of
aqueous Fe(NO
3
)
2
(a) can be used in aqueous HCl
(b) can be used in aqueous HCl
(c) can be used in aqueous H
2
SO
4
(d) can be used in aqueous H
2
SO
4
? 12. Conductance of 0.1 M KCl (conductivity = X ) filled in a
conductivity cell is Y . If the conductance of 0.1 M NaOH filled
in the same cell is Z , the molar conductance of NaOH will be
(a)
(b)
(c)
(d) 0.1
13. On the basis of the following E° values, the strongest oxidizing agent is
: 
Fe(CN)
6
]
4–
 ?[Fe(CN)
6
]
3–
 + e
– 
; E° = – 0.35 V
Fe
2+
 ? Fe
3+
 + e
–
;                            E° = – 0.77 V
(a) [Fe(CN)
6
]
4–
Page 5


PART-I (Single Correct MCQs)
1. The mathematical expression for law of independent migration of ions
and Ostwald’s dilution law are given by
(a )
(b)
(c)
(d)
2. The equivalent conductance of  solution of a weak monobasic acid
is 8.0 mho cm
2
 and at infinite dilution is 400 mho cm
2
. The dissociation
constant of this acid is: (a) 1.25 × 10
–6
(b) 6.25 × 10
–4
(c) 1.25 × 10
–4
(d) 1.25 × 10
–5
3. Molar ionic conductivities of a two-bivalent electrolytes x
2+
 and y
2–
 are
57 and 73 respectively. The molar conductivity of the solution formed
by them will be
(a) 130 S cm
2
 mol
–1
(b) 65 S cm
2
 mol
–1
(c) 260 S cm
2
 mol
–1
(d) 187 S cm
2
 mol
–1
4. If the E°
cell
 for a given reaction has a negative value, then which of the
following gives the correct relationships for the values of ?G° and K
eq
?
(a) ?G° > 0 ; K
eq
 > 1
(b) ?G° < 0 ; K
eq
 > 1
(c) ?G° < 0 ; K
eq
 < 1
(d) ?G° > 0 ; K
eq
 < 1
5. Standard electrode potentials are : Fe
+2
/Fe [ Eº = –0.44]; Fe
+3
/Fe
+2
  Eº =
+ 0.77 ; If Fe
+2
, Fe
+3
 and Fe blocks are kept together, then
(a) Fe
+3
 increases
(b) Fe
+3
 decreases
(c) remains unchanged
(d) Fe
+2
 decreases
6. An electrolytic cell contains a solution of Ag
2
SO
4
 and has platinum
electrodes. A current is passed until 1.6 gm of O
2
 has been liberated at
anode. The amount of silver deposited at cathode would be
(a) 107.88 g
(b) 1.6 g
(c) 0.8 g
(d) 21.60 g
7. For the cell reaction,
Cu
2+
 (C
1
, aq) + Zn(s) = Zn
2+
 (C
2
, aq) + Cu(s) of an electrochemical cell,
the change in free energy, ?G, at a given temperature is a function of
(a) ln (C
1
)
(b) ln (C
2
/C
1
)
(c) ln (C
2
)
(d) ln (C
1
 + C
2
)
8. The electrode potential  of a zinc electrode at 25°C with an
aqueous solution of 0.1 M ZnSO
4
 is [ = – 0.76 V. Assume 
 = 0.06 at 298 K].
(a) + 0.73
(b) – 0.79
(c) – 0.82
(d) – 0.70
9. A gas X at 1 atm is bubbled through a solution containing a mixture of
1 M Y
–
 and M Z
–
 at 25 °C. If the reduction potential of Z > Y > X, then,
(a) Y will oxidize X and not Z
(b) Y will oxidize Z and  not X
(c) Y will oxidize both X and Z
(d) Y will reduce both X and Z
10. For the electrochemical cell, 
= 0.44V and 
 
(X/X
–
) = 0.33V .
From this data one can deduce that
(a) M+X?M
+
+X
–
 is the spontaneous reaction
(b) M
+
+X
–
?M+X is the spontaneous reaction
(c) E
cell
 = 0.77 V
(d) E
cell
 = –0.77 V
11. Standard electrode potential data are useful for understanding the
suitability of an oxidant in a redox titration. Some half cell reactions
and their standard potentials are given below:
  E° = 1.51 V
 E° = 1.38 V
E° = 0.77 V
E° = 1.40 V
Identify the only incorrect statement regarding the quantitative estimation of
aqueous Fe(NO
3
)
2
(a) can be used in aqueous HCl
(b) can be used in aqueous HCl
(c) can be used in aqueous H
2
SO
4
(d) can be used in aqueous H
2
SO
4
? 12. Conductance of 0.1 M KCl (conductivity = X ) filled in a
conductivity cell is Y . If the conductance of 0.1 M NaOH filled
in the same cell is Z , the molar conductance of NaOH will be
(a)
(b)
(c)
(d) 0.1
13. On the basis of the following E° values, the strongest oxidizing agent is
: 
Fe(CN)
6
]
4–
 ?[Fe(CN)
6
]
3–
 + e
– 
; E° = – 0.35 V
Fe
2+
 ? Fe
3+
 + e
–
;                            E° = – 0.77 V
(a) [Fe(CN)
6
]
4–
(b) Fe
2+
(c) Fe
3+
(d) [Fe(CN)
6
]
3–
14. The variation of molar conductance of strong electrolyte with
(concentration)
½
 is represented by
(a)
(b)
(c)
(d)
15. A device that converts energy of combustion of fuels like hydrogen and
methane, directly into electrical energy is known as :
(a) Electrolytic cell
(b) Dynamo
(c) Ni-Cd cell
(d) Fuel cell
16. In acidic medium  is an oxidant as
Read More
174 docs

Top Courses for JEE

Explore Courses for JEE exam

Top Courses for JEE

Signup for Free!
Signup to see your scores go up within 7 days! Learn & Practice with 1000+ FREE Notes, Videos & Tests.
10M+ students study on EduRev
Related Searches

study material

,

shortcuts and tricks

,

Exam

,

MCQs

,

Sample Paper

,

Semester Notes

,

Electrochemistry Practice Questions - DPP for JEE

,

ppt

,

mock tests for examination

,

Objective type Questions

,

pdf

,

Previous Year Questions with Solutions

,

video lectures

,

Electrochemistry Practice Questions - DPP for JEE

,

Viva Questions

,

past year papers

,

Extra Questions

,

Important questions

,

practice quizzes

,

Electrochemistry Practice Questions - DPP for JEE

,

Summary

,

Free

;