NEET Exam  >  NEET Notes  >  Physics Class 11  >  DPP for NEET: Daily Practice Problems: Motion in a Straight Line- 1 (Solutions)

Motion in a Straight Line- 1 Practice Questions - DPP for NEET

Download, print and study this document offline
Please wait while the PDF view is loading
 Page 1


1. ( a) If t
1
 and 2 t
2
 are the time taken by particle to cover first
and second half distance respectively.
/2
36
xx
t==
...(i)
x
1
 = 4.5t
2
 and x
2
 = 7.5 t
2
So, 
1 2 22
4.5 7.5
22
+ =Þ +=
xx
xx tt
2
24
x
t= ...(ii)
Total time t = 
12
2
6 124
x xx
tt + = +=
So,average speed = 4 m/sec.
2. (c)
2
1
2
dv bt
bt dv btdt v K
dt
= Þ = Þ=+
At 
0 10
0, t v v Kv = = Þ=
We get 
2
0
1
2
v btv =+
Again 
2
2
0 02
11
2 23
dx bt
bt v x vtK
dt
= + Þ = ++
At 
2
0,00 t xK = =Þ=
\
3
0
1
6
x bt vt =+
3. (d) 
63
63
dv dv
v dt
dtv
=-Þ=
-
Integrating both sides, 
(6 3)
=
-
òò
dv
dt
v
Þ
1
log (6 3)
3
e
v
tK
-
=+
-
Þ log
e
(6 – 3v) = – 3t + K
2
....(i)
At t = 0, v = 0 Þ log
e
 6 = K
2
Substituting the value of K
2
 in equation (i)
log
e
(6 – 3v) = – 3t + log
e
 6
Þ
3
6 3 63
log3
66
t
e
vv
te
-
-- æö
=-Þ=
ç÷
èø
Þ
33
63 6 3 6(1)
tt
ve ve
--
- = Þ =-
Þ
3
2(1)
t
ve
-
=-
\ v
terminal
 = 2 m/s (when t = ¥)
Acceleration a = 
33
2(1 )6
tt
dvd
ee
dt dt
--
éù
= -=
ëû
Initial acceleration  = 6 m/s
2
.
4. (a) The body starts from rest at x = 0 and then again comes
to rest at x = 1. It means initially acceleration is positive
and then negative.
So we can conclude that a can not remain positive for
all t in the interval 01 t ££ i.e. a must change sign
during the motion.
5. ( b) The area under acceleration time graph gives change
in velocity . As acceleration is zero at the end of 11 sec.
i.e. v
max
= Area of DOAB
1
11 10 55m/s
2
= ´ ´=
11 sec.
t
10 / ms
2
a
A
B
O
6. (d) Let the car accelerate at rate a for time t
1
 then maximum
velocity attained, v = 0 + at
1
 = at
1
Now , the car decelerates at a rate b for time (t – t
1
) and
finally comes to rest. Then,
0 = v – b(t – t
1
)
Þ 0 = at
1
 – bt + bt
1
Þ
1
tt
b
=
a +b
Þvt
ab
=
a+b
7. (c) S
n
 = (2 1)
2
+-
a
un
= (2 1)
2
-
a
n ( 0) = Qu
[ ]
1
2( 1) 1 (2 n 1)
22
+
= +-= +
n
aa
Sn
\
1
21
21
+
-
=
+
n
n
S n
Sn
Page 2


1. ( a) If t
1
 and 2 t
2
 are the time taken by particle to cover first
and second half distance respectively.
/2
36
xx
t==
...(i)
x
1
 = 4.5t
2
 and x
2
 = 7.5 t
2
So, 
1 2 22
4.5 7.5
22
+ =Þ +=
xx
xx tt
2
24
x
t= ...(ii)
Total time t = 
12
2
6 124
x xx
tt + = +=
So,average speed = 4 m/sec.
2. (c)
2
1
2
dv bt
bt dv btdt v K
dt
= Þ = Þ=+
At 
0 10
0, t v v Kv = = Þ=
We get 
2
0
1
2
v btv =+
Again 
2
2
0 02
11
2 23
dx bt
bt v x vtK
dt
= + Þ = ++
At 
2
0,00 t xK = =Þ=
\
3
0
1
6
x bt vt =+
3. (d) 
63
63
dv dv
v dt
dtv
=-Þ=
-
Integrating both sides, 
(6 3)
=
-
òò
dv
dt
v
Þ
1
log (6 3)
3
e
v
tK
-
=+
-
Þ log
e
(6 – 3v) = – 3t + K
2
....(i)
At t = 0, v = 0 Þ log
e
 6 = K
2
Substituting the value of K
2
 in equation (i)
log
e
(6 – 3v) = – 3t + log
e
 6
Þ
3
6 3 63
log3
66
t
e
vv
te
-
-- æö
=-Þ=
ç÷
èø
Þ
33
63 6 3 6(1)
tt
ve ve
--
- = Þ =-
Þ
3
2(1)
t
ve
-
=-
\ v
terminal
 = 2 m/s (when t = ¥)
Acceleration a = 
33
2(1 )6
tt
dvd
ee
dt dt
--
éù
= -=
ëû
Initial acceleration  = 6 m/s
2
.
4. (a) The body starts from rest at x = 0 and then again comes
to rest at x = 1. It means initially acceleration is positive
and then negative.
So we can conclude that a can not remain positive for
all t in the interval 01 t ££ i.e. a must change sign
during the motion.
5. ( b) The area under acceleration time graph gives change
in velocity . As acceleration is zero at the end of 11 sec.
i.e. v
max
= Area of DOAB
1
11 10 55m/s
2
= ´ ´=
11 sec.
t
10 / ms
2
a
A
B
O
6. (d) Let the car accelerate at rate a for time t
1
 then maximum
velocity attained, v = 0 + at
1
 = at
1
Now , the car decelerates at a rate b for time (t – t
1
) and
finally comes to rest. Then,
0 = v – b(t – t
1
)
Þ 0 = at
1
 – bt + bt
1
Þ
1
tt
b
=
a +b
Þvt
ab
=
a+b
7. (c) S
n
 = (2 1)
2
+-
a
un
= (2 1)
2
-
a
n ( 0) = Qu
[ ]
1
2( 1) 1 (2 n 1)
22
+
= +-= +
n
aa
Sn
\
1
21
21
+
-
=
+
n
n
S n
Sn
6
DPP/ P 03
 
. 8 (c) As acc. is constant so from s = ut + 
1
2
 at
2
 we have
x = 
1
2
 at
2
   [u = 0] ....(i)
Now if it travels a distance y in next t sec.
in 2t sec total distance travelled
x + y = 
1
2
 a(2t)
2
....(ii) (t + t = 2t)
Dividing eq
n
. (ii) by eq
n
 (i),  
xy
4
x
+
=  or  y = 3x
. 9 (b)
9
7
) 1 5 2 (
2
g
) 1 4 2 (
2
g
) 5 ( x
) 4 ( x
=
- ´
- ´
=
        th
n
a
[ S u (2n 1)]
2
=+- Q
10 (c) Let body takes T sec to reach maximum height.
Then v = u – gT
v = 0, at highest point.
g
u
T =
 ...................(1]
H
A
C
B v = 0
u
V elocity attained by body in (T – t) sec
v = u – g (T – t)
   = u – gT + gt = u –
gt
g
u
g +
or v = gt ...................(2)
\Distance travelled in last t sec of its ascent
2 2
gt
2
1
gt
2
1
t ) gt ( S = - =
1 1 . (c) v = 
dxd
dt dt
= (2t
2
 + t + 5) =  4t + 1 m/s
and  a = 
dt
d
dt
dv
=
 (4t + 1)   ;  a  =  4  m/s
2
2 1 . (a) 0
dvt
a1
dtT
æö
=-
ç÷
èø
Þ 
vt
2
00
00
tt
dv a 1 dt v a t
T 2T
æö
æö
= - Þ=-
ç÷ ç÷
èø
èø
òò
dx
v
dt
= Q so, 
t
2
0
0
t
dx v dt x a t dt
2T
æö
= Þ=-
ç÷
èø
òòò
Þ 
23
0
tt
xa
2 6T
æö
=-
ç÷
èø
Q a = 0 Þ  t = T
Average velocity  = 
displacement
time
= 
23
0
0
TT
a
2 6T
aT
T3
æö
-
ç÷
èø
=
3 1 . (b) Let u
1
, u
2
, u
3
 and u
4
 be velocities at time t = 0, t
1
,
(t
1
 + t
2
) and (t
1
 + t
2
 + t
3
) respectively and acceleration
is a then
v
1
 = 
23 12
2
,
22
uu uu
v
+ +
= and 
34
3
2
uu
v
+
=
Also u
2
 = u
1
 + at
1
, u
3
 = u
1
 + a(t
1
 + t
2
)
and u
4
 = u
1
 + a(t
1
 + t
2
 + t
3
)
By solving, we get
1 2 12
2 3 23
()
()
-+
=
-+
v v tt
v v tt
4 1 . (c) x
dxd
v
dt dt
==
 (3t
2
 – 6t) = 6t – 6. At t = 1, v
x
 = 0
y
dyd
v
dt dt
==
 (t
2
 – 2t) = 2t – 2. At t = 1, v
y
 = 0
Hence v = 
22
0
xy
vv +=
5 1 . (c) Initial relative velocity = v
1
 – v
2
.
Final relative velocity = 0
From v
2
 = u
2
 – 2as
Þ 0 = (v
1
 – v
2
)
2
 – 2 × a × s
Þ
2
12
()
2
vv
s
a
-
=
If the distance between two cars is 's' then collision will
take place. To avoid collision d > s
\  
2
12
()
2
vv
d
a
-
>
where d = actual initial distance between two cars.
16 (c) If the body starts from rest and moves with constant
acceleration then the ratio of distances in consecutive
equal time interval S
1
 : S
2
 : S
3
 = 1 : 3 : 5
7 1 . (c) Instantaneous velocity  
x
v
t
D
=
D
By using the data from the table
12
0 ( 2) 60
2m/s, 6m/s,
11
vv
---
= = ==
3
166
10m/s
1
v
-
==
So, motion is non-uniform but accelerated.
Page 3


1. ( a) If t
1
 and 2 t
2
 are the time taken by particle to cover first
and second half distance respectively.
/2
36
xx
t==
...(i)
x
1
 = 4.5t
2
 and x
2
 = 7.5 t
2
So, 
1 2 22
4.5 7.5
22
+ =Þ +=
xx
xx tt
2
24
x
t= ...(ii)
Total time t = 
12
2
6 124
x xx
tt + = +=
So,average speed = 4 m/sec.
2. (c)
2
1
2
dv bt
bt dv btdt v K
dt
= Þ = Þ=+
At 
0 10
0, t v v Kv = = Þ=
We get 
2
0
1
2
v btv =+
Again 
2
2
0 02
11
2 23
dx bt
bt v x vtK
dt
= + Þ = ++
At 
2
0,00 t xK = =Þ=
\
3
0
1
6
x bt vt =+
3. (d) 
63
63
dv dv
v dt
dtv
=-Þ=
-
Integrating both sides, 
(6 3)
=
-
òò
dv
dt
v
Þ
1
log (6 3)
3
e
v
tK
-
=+
-
Þ log
e
(6 – 3v) = – 3t + K
2
....(i)
At t = 0, v = 0 Þ log
e
 6 = K
2
Substituting the value of K
2
 in equation (i)
log
e
(6 – 3v) = – 3t + log
e
 6
Þ
3
6 3 63
log3
66
t
e
vv
te
-
-- æö
=-Þ=
ç÷
èø
Þ
33
63 6 3 6(1)
tt
ve ve
--
- = Þ =-
Þ
3
2(1)
t
ve
-
=-
\ v
terminal
 = 2 m/s (when t = ¥)
Acceleration a = 
33
2(1 )6
tt
dvd
ee
dt dt
--
éù
= -=
ëû
Initial acceleration  = 6 m/s
2
.
4. (a) The body starts from rest at x = 0 and then again comes
to rest at x = 1. It means initially acceleration is positive
and then negative.
So we can conclude that a can not remain positive for
all t in the interval 01 t ££ i.e. a must change sign
during the motion.
5. ( b) The area under acceleration time graph gives change
in velocity . As acceleration is zero at the end of 11 sec.
i.e. v
max
= Area of DOAB
1
11 10 55m/s
2
= ´ ´=
11 sec.
t
10 / ms
2
a
A
B
O
6. (d) Let the car accelerate at rate a for time t
1
 then maximum
velocity attained, v = 0 + at
1
 = at
1
Now , the car decelerates at a rate b for time (t – t
1
) and
finally comes to rest. Then,
0 = v – b(t – t
1
)
Þ 0 = at
1
 – bt + bt
1
Þ
1
tt
b
=
a +b
Þvt
ab
=
a+b
7. (c) S
n
 = (2 1)
2
+-
a
un
= (2 1)
2
-
a
n ( 0) = Qu
[ ]
1
2( 1) 1 (2 n 1)
22
+
= +-= +
n
aa
Sn
\
1
21
21
+
-
=
+
n
n
S n
Sn
6
DPP/ P 03
 
. 8 (c) As acc. is constant so from s = ut + 
1
2
 at
2
 we have
x = 
1
2
 at
2
   [u = 0] ....(i)
Now if it travels a distance y in next t sec.
in 2t sec total distance travelled
x + y = 
1
2
 a(2t)
2
....(ii) (t + t = 2t)
Dividing eq
n
. (ii) by eq
n
 (i),  
xy
4
x
+
=  or  y = 3x
. 9 (b)
9
7
) 1 5 2 (
2
g
) 1 4 2 (
2
g
) 5 ( x
) 4 ( x
=
- ´
- ´
=
        th
n
a
[ S u (2n 1)]
2
=+- Q
10 (c) Let body takes T sec to reach maximum height.
Then v = u – gT
v = 0, at highest point.
g
u
T =
 ...................(1]
H
A
C
B v = 0
u
V elocity attained by body in (T – t) sec
v = u – g (T – t)
   = u – gT + gt = u –
gt
g
u
g +
or v = gt ...................(2)
\Distance travelled in last t sec of its ascent
2 2
gt
2
1
gt
2
1
t ) gt ( S = - =
1 1 . (c) v = 
dxd
dt dt
= (2t
2
 + t + 5) =  4t + 1 m/s
and  a = 
dt
d
dt
dv
=
 (4t + 1)   ;  a  =  4  m/s
2
2 1 . (a) 0
dvt
a1
dtT
æö
=-
ç÷
èø
Þ 
vt
2
00
00
tt
dv a 1 dt v a t
T 2T
æö
æö
= - Þ=-
ç÷ ç÷
èø
èø
òò
dx
v
dt
= Q so, 
t
2
0
0
t
dx v dt x a t dt
2T
æö
= Þ=-
ç÷
èø
òòò
Þ 
23
0
tt
xa
2 6T
æö
=-
ç÷
èø
Q a = 0 Þ  t = T
Average velocity  = 
displacement
time
= 
23
0
0
TT
a
2 6T
aT
T3
æö
-
ç÷
èø
=
3 1 . (b) Let u
1
, u
2
, u
3
 and u
4
 be velocities at time t = 0, t
1
,
(t
1
 + t
2
) and (t
1
 + t
2
 + t
3
) respectively and acceleration
is a then
v
1
 = 
23 12
2
,
22
uu uu
v
+ +
= and 
34
3
2
uu
v
+
=
Also u
2
 = u
1
 + at
1
, u
3
 = u
1
 + a(t
1
 + t
2
)
and u
4
 = u
1
 + a(t
1
 + t
2
 + t
3
)
By solving, we get
1 2 12
2 3 23
()
()
-+
=
-+
v v tt
v v tt
4 1 . (c) x
dxd
v
dt dt
==
 (3t
2
 – 6t) = 6t – 6. At t = 1, v
x
 = 0
y
dyd
v
dt dt
==
 (t
2
 – 2t) = 2t – 2. At t = 1, v
y
 = 0
Hence v = 
22
0
xy
vv +=
5 1 . (c) Initial relative velocity = v
1
 – v
2
.
Final relative velocity = 0
From v
2
 = u
2
 – 2as
Þ 0 = (v
1
 – v
2
)
2
 – 2 × a × s
Þ
2
12
()
2
vv
s
a
-
=
If the distance between two cars is 's' then collision will
take place. To avoid collision d > s
\  
2
12
()
2
vv
d
a
-
>
where d = actual initial distance between two cars.
16 (c) If the body starts from rest and moves with constant
acceleration then the ratio of distances in consecutive
equal time interval S
1
 : S
2
 : S
3
 = 1 : 3 : 5
7 1 . (c) Instantaneous velocity  
x
v
t
D
=
D
By using the data from the table
12
0 ( 2) 60
2m/s, 6m/s,
11
vv
---
= = ==
3
166
10m/s
1
v
-
==
So, motion is non-uniform but accelerated.
DPP/ P 03
7
8 1 . (a) 2
1 2
2
v
at vtt
a
= Þ=
9 1 . (b) x = 4(t – 2) + a(t – 2)
2
At t = 0, x = – 8 + 4a = 4a – 8
4 2 ( 2)
dx
v at
dt
= =+-
At t = 0, v = 4 – 4a = 4(1 – a)
But acceleration,  
2
2
2
dx
aa
dt
==
0 2 . (d)
-a b
= +
t t
x ae be
V elocity ()
tt
dxd
v ae be
dt dt
-ab
==+
. ( ) ()
-a b -a b
= -a + b =- a +b
t t tt
ae be a e be
Acceleration = 
().
tt
a e be
-ab
-a -a+bb
22 tt
a e be
-ab
= a +b
Acceleration is positive so velocity goes on increasing
with time.
1 2 . ( d ) (1)    a = 3 sin 4t
Þ
dv
3sin 4t
dt
=
Þ dv 3sin 4t dt c =+
òò
Þ v = 
3
cos4tc
4
-
+
For initial velocity , t = 0
0
3
vC
4
=-+
At particular value of 
3
C
4
= , 
0
v0 =
Therefore, initial velocity may or may not be zero.
(2)  Acceleration = 0
Þ a = 3 sin4t = 0 Þ sin 4t = 0
Þ 4t = np Þ
n
t
4
p
=
where n = 0, 1, 2, .................
Therefore, the acceleration of the particle becomes zero
after each interval of 
4
p
 second.
(3)  As acceleration is sinusoidal function of time, so
particle repeats its path periodically . Thus, the particle
comes to its initial position after sometime (period of
function).
(4)  The particle moves in a straight line path as it
performs S.H.M.
Since (1) & (3) are correct, hence correct answer is (d).
2 2 . (c) For an inertial frame of reference, its acceleration should
be zero. As reference frame attached to the earth i.e. a
rotating or revolving frame is accelerating, therefore, it
will be non-inertial.
Thus (2) & (4) are correct, so correct answer is (c).
3 2 . (c) Average speed
12
12
12
2vv Total distance 2x
xx
Total time v v
vv
= ==
+
+
Average velocity 
Total displacement
Total time
=
Q  It comes back to its initial position
\  Total displacement is zero.
Hence, average velocity is zero.
Sol. For Qs. 4 2 -27. a = sin pt
\  dv 2sin t dt =p
òò
 or 
2
v cos tC =- p+
p
At t = 0, v = 0  
2
C \=
p
 or  
2
v (1 cos t) = -p
p
V elocity is always non-negative, hence particle always moves
along positive x-direction.
\  Distance from time t = 0 to t = t is
t t
2
0
0
2 2 1 22
S (1 cos t) dt t sin t t sin t
æö
= - p = - p = -p
ç÷
èø p ppp
p
ò
Also displacement from time t = 0 to t = 
2
2t2
sint -p
p
p
Distance from time t = t to t = 1s = 
2
p
 meters.
. 4 2 (a) 5 2 . (b) 6 2 . (b)
7 2 . (d) Negative slope of position time graph represents that
the body is moving towards the negative direction and
if the slope of the graph decrease with time then it
represents the decrease in speed i.e. retardation in
motion.
8 2 . (c) As per definition, acceleration is the rate of change of
velocity,
i.e. .
dv
a
dt
=
r
r
If velocity is constant
0,0
dv
a
dt
= \=
r
r
Therefore, if a body has constant velocity it cannot
have non zero acceleration.
. 9 2 (d) The displacement is the shortest distance between
initial and final position. When final position of a body
coincides with its initial position, displacement is zero,
but the distance travelled is not zero.
Read More
97 videos|378 docs|103 tests

Top Courses for NEET

FAQs on Motion in a Straight Line- 1 Practice Questions - DPP for NEET

1. What is the formula to calculate average speed in motion in a straight line?
Ans. The formula to calculate average speed in motion in a straight line is given by: Average speed = Total distance traveled / Total time taken
2. How is displacement different from distance in motion in a straight line?
Ans. In motion in a straight line, distance refers to the total path traveled by an object, while displacement refers to the change in position of the object in a specific direction. Distance is a scalar quantity, whereas displacement is a vector quantity.
3. How can we represent the motion of an object in a straight line graphically?
Ans. The motion of an object in a straight line can be represented graphically by plotting a distance-time graph. In this graph, the distance traveled by the object is plotted on the y-axis, while the time taken is plotted on the x-axis. The slope of the graph represents the speed of the object.
4. What is the difference between instantaneous speed and average speed in motion in a straight line?
Ans. Instantaneous speed refers to the speed of an object at a particular instant of time, while average speed is the total distance traveled divided by the total time taken. Instantaneous speed can vary throughout the motion, while average speed gives an overall measure of the motion.
5. How can we calculate the acceleration of an object in motion in a straight line?
Ans. The acceleration of an object in motion in a straight line can be calculated using the formula: Acceleration = Change in velocity / Time taken where change in velocity is the difference between the final velocity and initial velocity of the object, and time taken is the duration of the motion.
97 videos|378 docs|103 tests
Download as PDF
Explore Courses for NEET exam

Top Courses for NEET

Signup for Free!
Signup to see your scores go up within 7 days! Learn & Practice with 1000+ FREE Notes, Videos & Tests.
10M+ students study on EduRev
Related Searches

Free

,

Semester Notes

,

Important questions

,

Motion in a Straight Line- 1 Practice Questions - DPP for NEET

,

Exam

,

MCQs

,

Previous Year Questions with Solutions

,

pdf

,

past year papers

,

Motion in a Straight Line- 1 Practice Questions - DPP for NEET

,

Extra Questions

,

practice quizzes

,

shortcuts and tricks

,

ppt

,

mock tests for examination

,

Viva Questions

,

study material

,

Motion in a Straight Line- 1 Practice Questions - DPP for NEET

,

Summary

,

Sample Paper

,

Objective type Questions

,

video lectures

;