NEET Exam  >  NEET Notes  >  Physics Class 12  >  DPP for NEET: Daily Practice Problems: Magnetic Effects of Current- 2 (Solutions)

Magnetic Effects of Current- 2 Practice Questions - DPP for NEET

Download, print and study this document offline
Please wait while the PDF view is loading
 Page 1


(1) (b) E
kp
 = eV , \ E
k
 = qV ,
\ E
k
 µ q, \ V = constant
E
kp
 : E
kd 
: E
ka
 : : 1 : 1 : 2.
(2) (c)E
K
 = 
2 22
q rB
2m
\ E
k
 µ 
2 2
p
a
2
k
p p
m
q q
mE
m
=´
= 
41
14
´ = 
E
K
a
 = 8eV. .
(3) (a) B = 
2
KVe
r
 = 
7 6 19
102
10 3 1.6 10
(210)
--
-
´´´
´
   = 1.2 Tesla.
(4) (a) F = qvB sinq
= 2 × 1.6 × 10
–19
 × 10
5
 × 0.8 × 
1
2
æö
ç÷
èø
= 1.28 × 10
–14
 N [ Q charge on a particle = 2e]
(5) (b) The direction of 
r
F
 is along (V B) ´
rr
 which is towards
the right. Thus the beam deflects to your right side.
(6) (b) The particle is moving clockwise which shows that
force on the particle is opposite to given by right hand
palm rule of fleming left hand rule. These two laws are
used for positive charge. Here since laws are disobeyed,
we can say that charge is negative.
(7) (b) The point lies at the circumference hence it will come
back after a time period T
T = 
2p m
qB
(8) (a) The magnetic force on a current carrying wire of length
L, placed in a magnetic field B at an angleq with the
field is given by
F = i l Bsinq.
Here B = 5.0 × 10
–4
 N/A.m. i = 2.0 A,
l = 50 cm = 0.50 m,
q = 60º
F = 2.0 × 0.50 × (5.0 × 10
–4
) × sin 60º
= 4.33 × 10
–4
 N
According to the flemings left - hand rule, this force
will act perpendicular to both the wire and the magnetic
field.
(9) (a, c) r µ 
m
q
 Þ r
H
 : r
He
 : r
o
 = 
1416
::
1 12
 = 1 : 2 : 2
Radius is smallest for H
+
, so it is deflected most.
(10) (b) In the figure, the z-axis points out of the paper, and the
magnetic field is directed into the paper, existing in the
region between PQ and RS. The particle moves in a
circular path of radius r in the magnetic field. It can just
enter the region x > b for r ³ (b – a)
Now r = 
( )
B
mv
ba
q
³-
or v ³ 
( ) B qba
m
-
 Þ v
min
 = 
( ) B qba
m
-
(11) (a) From figure it is clear that
q
b r
q
d
q
sin q = 
d
r
 also r = 
B
p
q
\ sin q = 
Bqd
p
(12) (a) For on wire Q due to wire P is
F
P
 =
7
2 30 10
10 0.1
0.1
-
´´
´´
 = 6 ´ 10
– 5
 N (T owards left)
Force on wire Q due to wire R is
F
R
 = 
7
2 20 10
10 0.1
0.02
-
´´
´´
 = 20 ´ 10
–5
 (T owards right)
Hence F
net 
= F
R
 – F
P
 = 14 ´ 10
–5
N = 14 ´ 10
–4
 N
(Towards right)
(13) (d) F q (v B) =´
rr
r
vB ´
r
r
 = 
5
ˆ ˆˆ
i jk
3 20
5 10 00 ´
 = 
ˆ
k (–10 × 10
5
)   = (–
ˆ
k 10
6
)
q = 2e = 2 × 1.6 x 10
-19
 = 3.2 × 10
-19
 Coulomb
F
r
 = 3.2 × 10
–19
 (–
ˆ
k × 10
6
)
Þ F
r
 = – 3.2 × 10
–13
 
ˆ
k .
\ |F| = 3.2 × 10
–13
 Coulomb.
(14) (b)
\ F = q (
v
r
 × 
r
B
) = 2evB sin 90º
or F = 2evB
Page 2


(1) (b) E
kp
 = eV , \ E
k
 = qV ,
\ E
k
 µ q, \ V = constant
E
kp
 : E
kd 
: E
ka
 : : 1 : 1 : 2.
(2) (c)E
K
 = 
2 22
q rB
2m
\ E
k
 µ 
2 2
p
a
2
k
p p
m
q q
mE
m
=´
= 
41
14
´ = 
E
K
a
 = 8eV. .
(3) (a) B = 
2
KVe
r
 = 
7 6 19
102
10 3 1.6 10
(210)
--
-
´´´
´
   = 1.2 Tesla.
(4) (a) F = qvB sinq
= 2 × 1.6 × 10
–19
 × 10
5
 × 0.8 × 
1
2
æö
ç÷
èø
= 1.28 × 10
–14
 N [ Q charge on a particle = 2e]
(5) (b) The direction of 
r
F
 is along (V B) ´
rr
 which is towards
the right. Thus the beam deflects to your right side.
(6) (b) The particle is moving clockwise which shows that
force on the particle is opposite to given by right hand
palm rule of fleming left hand rule. These two laws are
used for positive charge. Here since laws are disobeyed,
we can say that charge is negative.
(7) (b) The point lies at the circumference hence it will come
back after a time period T
T = 
2p m
qB
(8) (a) The magnetic force on a current carrying wire of length
L, placed in a magnetic field B at an angleq with the
field is given by
F = i l Bsinq.
Here B = 5.0 × 10
–4
 N/A.m. i = 2.0 A,
l = 50 cm = 0.50 m,
q = 60º
F = 2.0 × 0.50 × (5.0 × 10
–4
) × sin 60º
= 4.33 × 10
–4
 N
According to the flemings left - hand rule, this force
will act perpendicular to both the wire and the magnetic
field.
(9) (a, c) r µ 
m
q
 Þ r
H
 : r
He
 : r
o
 = 
1416
::
1 12
 = 1 : 2 : 2
Radius is smallest for H
+
, so it is deflected most.
(10) (b) In the figure, the z-axis points out of the paper, and the
magnetic field is directed into the paper, existing in the
region between PQ and RS. The particle moves in a
circular path of radius r in the magnetic field. It can just
enter the region x > b for r ³ (b – a)
Now r = 
( )
B
mv
ba
q
³-
or v ³ 
( ) B qba
m
-
 Þ v
min
 = 
( ) B qba
m
-
(11) (a) From figure it is clear that
q
b r
q
d
q
sin q = 
d
r
 also r = 
B
p
q
\ sin q = 
Bqd
p
(12) (a) For on wire Q due to wire P is
F
P
 =
7
2 30 10
10 0.1
0.1
-
´´
´´
 = 6 ´ 10
– 5
 N (T owards left)
Force on wire Q due to wire R is
F
R
 = 
7
2 20 10
10 0.1
0.02
-
´´
´´
 = 20 ´ 10
–5
 (T owards right)
Hence F
net 
= F
R
 – F
P
 = 14 ´ 10
–5
N = 14 ´ 10
–4
 N
(Towards right)
(13) (d) F q (v B) =´
rr
r
vB ´
r
r
 = 
5
ˆ ˆˆ
i jk
3 20
5 10 00 ´
 = 
ˆ
k (–10 × 10
5
)   = (–
ˆ
k 10
6
)
q = 2e = 2 × 1.6 x 10
-19
 = 3.2 × 10
-19
 Coulomb
F
r
 = 3.2 × 10
–19
 (–
ˆ
k × 10
6
)
Þ F
r
 = – 3.2 × 10
–13
 
ˆ
k .
\ |F| = 3.2 × 10
–13
 Coulomb.
(14) (b)
\ F = q (
v
r
 × 
r
B
) = 2evB sin 90º
or F = 2evB
DPP/ P 40
114
(15) (a) Force on side BC AND AD are equal but opposite so
their net will be zero.
10 cm
15 cm
2 cm
2 A
A
B C
D
F
AB F
CD
But F
AB
 = 
72
2
2 21
10 15 10
2 10
--
-
´´
´ ´´
´
 = 3 ´ 10
–6
 N
and F
CD
 = 
( )
72
2
2 21
10 15 10
2 10
--
-
´´
´ ´´
´
 = 0.5 ´ 10
–6
 N
Þ F
net
 = F
AB
 – F
CD
 = 2.5 ´ 10
–6
 N
= 25 ´ 10
–7
 N, towards the wire.
(16) (b) In order to make a proton circulate the earth along the
equator, the minimum magnetic field induction 
B
r
should be horizontal nad perpendicular to equator.
The magnetic force provides the necessary centripetal
force.
i.e. qv B = 
2
mv
r
or B = 
mv
qr
Here m = 1.7 × 10
–27
 kg, v = 1.0 × 10
7
 m/s
q = e = 1.6 × 10
-19
 coulomb, r = 6.37 × 10
6
 m
B = 
277
196
1.7 10 1.0 10
1.6 10 6.37 10
-
-
´ ´´
´ ´´
 = 1.67 × 10
–8
 weber/m
2
.
(17) (c) We have F = qvB = 
2
mv
r
 or v = 
qBr
m
= 
19
27
3.2 10 1.2 0.45
6.8 10
-
-
´ ´´
´
 = 2.6 × 10
7
 m/s.
The frequency of rotation n = 
v
2r p
= 
7
2.6 10
2 3.14 0.45
´
´´
 = 9.2 × 10
6
  sec
–1
.
Kinetic energy of a-particle,
E
K
 = 
1
2
 × 6.8 × 10
–27
 × (2.6 × 10
7
)
2
= 2.3 × 10
–12
 joule.
= 
12
19
2.3 10
1.6 10
-
-
´
´
 eV olt = 14 × 10
6
 eV = 14 MeV olt.
If V is accelerating potential of a-particle, then Kinetic
energy = qV
14 × 10
6
 eV olt = 2eV (since charge on a-particle = 2e)
\ V = 
6
14 10
2
´
 = 7 × 10
6
 V olt.
(18) (a) If electron beam passes undeflected in simultaneous
electric and magnetic fields 
r
E
 and 
r
B
 velocity of beam
r
v
 much be mutually perpendicular and the required
speed v is given by-
4
3
E 1 10
v
B
2 10
-
´
==
´
 = 5 × 10
6
 m/s.
If electric field is removed, the electron traverses a
circular path of radius r given by 
2
mv
r
 = evB or r = 
mv
eB
.
Here m = 9.1 × 10
–31
 kg, v = 5 × 10
6
 m/s.
e = 1.6 × 10
–19
 coul and B = 2 × 10
–3
 weber/m
2
\ r = 
316
193
(9.1 10 ) (5 10 )
(1.6 10 ) (2 10 )
-
--
´´
´´
        = 1.43 × 10
-2
 m = 1.43 cm.
(19) (a) For L length or wire, to balance,
F
magnetic
 = mg Þ ILB = mg,
Therefore B = mg/IL = (m/L)g/I
= 
3
45 10 9.8
30
-
´´
 = 1.47 × 10
-2
 tesla.
= 147 Gauss.
(20) (b) According to Fleming's left hand rule, magnetic force
on electrons will be downward.
e
–
e
–
e
–
e
–
e
–
e
–
e
–
×
e
–
e
–
e
–
e
–
e
–
e
–
e
–
×
(21) (b) \ F = mg = Bil
or 1 × 9.8 = 0.98 × i × 1, Þ i = 10A.
(22) (b) When currents flow in two long, parallel wires in the
same direction, the wires exert a force of attraction on
each other. The magnitude of this force acting per meter
length of the wires is given by
F = 
0 12
µ ii
2R p
 = 2 × 10
–7
 
12
ii
R
 N/m.
Here i
1
 = 10 A, i
2
 = 15 A, R = 30 cm = 0.3 m
\ F = 2 × 10
–7
 
10 15
0.3
´
 = 1 × 10
–4
 N/m.
\ Force on 5m length of the wire
= 5 × (1 × 10
–4
) = (5 × 10
-4
) = 5 × 10
-4
 N (attraction).
(23) (d) The electron will pass undeviated if the electric force
and magnetic force are equal and opposite. Thus
E.e. = Bev or B = E/v but E = V/d
Therefore, 
36
V 600
B
v.d.
3 10 2 10
-
==
´ ´´
\ B = 0.1 Wb/m
2
.
The direction of field is perpendicular to the plane of
paper vertically downward.
Page 3


(1) (b) E
kp
 = eV , \ E
k
 = qV ,
\ E
k
 µ q, \ V = constant
E
kp
 : E
kd 
: E
ka
 : : 1 : 1 : 2.
(2) (c)E
K
 = 
2 22
q rB
2m
\ E
k
 µ 
2 2
p
a
2
k
p p
m
q q
mE
m
=´
= 
41
14
´ = 
E
K
a
 = 8eV. .
(3) (a) B = 
2
KVe
r
 = 
7 6 19
102
10 3 1.6 10
(210)
--
-
´´´
´
   = 1.2 Tesla.
(4) (a) F = qvB sinq
= 2 × 1.6 × 10
–19
 × 10
5
 × 0.8 × 
1
2
æö
ç÷
èø
= 1.28 × 10
–14
 N [ Q charge on a particle = 2e]
(5) (b) The direction of 
r
F
 is along (V B) ´
rr
 which is towards
the right. Thus the beam deflects to your right side.
(6) (b) The particle is moving clockwise which shows that
force on the particle is opposite to given by right hand
palm rule of fleming left hand rule. These two laws are
used for positive charge. Here since laws are disobeyed,
we can say that charge is negative.
(7) (b) The point lies at the circumference hence it will come
back after a time period T
T = 
2p m
qB
(8) (a) The magnetic force on a current carrying wire of length
L, placed in a magnetic field B at an angleq with the
field is given by
F = i l Bsinq.
Here B = 5.0 × 10
–4
 N/A.m. i = 2.0 A,
l = 50 cm = 0.50 m,
q = 60º
F = 2.0 × 0.50 × (5.0 × 10
–4
) × sin 60º
= 4.33 × 10
–4
 N
According to the flemings left - hand rule, this force
will act perpendicular to both the wire and the magnetic
field.
(9) (a, c) r µ 
m
q
 Þ r
H
 : r
He
 : r
o
 = 
1416
::
1 12
 = 1 : 2 : 2
Radius is smallest for H
+
, so it is deflected most.
(10) (b) In the figure, the z-axis points out of the paper, and the
magnetic field is directed into the paper, existing in the
region between PQ and RS. The particle moves in a
circular path of radius r in the magnetic field. It can just
enter the region x > b for r ³ (b – a)
Now r = 
( )
B
mv
ba
q
³-
or v ³ 
( ) B qba
m
-
 Þ v
min
 = 
( ) B qba
m
-
(11) (a) From figure it is clear that
q
b r
q
d
q
sin q = 
d
r
 also r = 
B
p
q
\ sin q = 
Bqd
p
(12) (a) For on wire Q due to wire P is
F
P
 =
7
2 30 10
10 0.1
0.1
-
´´
´´
 = 6 ´ 10
– 5
 N (T owards left)
Force on wire Q due to wire R is
F
R
 = 
7
2 20 10
10 0.1
0.02
-
´´
´´
 = 20 ´ 10
–5
 (T owards right)
Hence F
net 
= F
R
 – F
P
 = 14 ´ 10
–5
N = 14 ´ 10
–4
 N
(Towards right)
(13) (d) F q (v B) =´
rr
r
vB ´
r
r
 = 
5
ˆ ˆˆ
i jk
3 20
5 10 00 ´
 = 
ˆ
k (–10 × 10
5
)   = (–
ˆ
k 10
6
)
q = 2e = 2 × 1.6 x 10
-19
 = 3.2 × 10
-19
 Coulomb
F
r
 = 3.2 × 10
–19
 (–
ˆ
k × 10
6
)
Þ F
r
 = – 3.2 × 10
–13
 
ˆ
k .
\ |F| = 3.2 × 10
–13
 Coulomb.
(14) (b)
\ F = q (
v
r
 × 
r
B
) = 2evB sin 90º
or F = 2evB
DPP/ P 40
114
(15) (a) Force on side BC AND AD are equal but opposite so
their net will be zero.
10 cm
15 cm
2 cm
2 A
A
B C
D
F
AB F
CD
But F
AB
 = 
72
2
2 21
10 15 10
2 10
--
-
´´
´ ´´
´
 = 3 ´ 10
–6
 N
and F
CD
 = 
( )
72
2
2 21
10 15 10
2 10
--
-
´´
´ ´´
´
 = 0.5 ´ 10
–6
 N
Þ F
net
 = F
AB
 – F
CD
 = 2.5 ´ 10
–6
 N
= 25 ´ 10
–7
 N, towards the wire.
(16) (b) In order to make a proton circulate the earth along the
equator, the minimum magnetic field induction 
B
r
should be horizontal nad perpendicular to equator.
The magnetic force provides the necessary centripetal
force.
i.e. qv B = 
2
mv
r
or B = 
mv
qr
Here m = 1.7 × 10
–27
 kg, v = 1.0 × 10
7
 m/s
q = e = 1.6 × 10
-19
 coulomb, r = 6.37 × 10
6
 m
B = 
277
196
1.7 10 1.0 10
1.6 10 6.37 10
-
-
´ ´´
´ ´´
 = 1.67 × 10
–8
 weber/m
2
.
(17) (c) We have F = qvB = 
2
mv
r
 or v = 
qBr
m
= 
19
27
3.2 10 1.2 0.45
6.8 10
-
-
´ ´´
´
 = 2.6 × 10
7
 m/s.
The frequency of rotation n = 
v
2r p
= 
7
2.6 10
2 3.14 0.45
´
´´
 = 9.2 × 10
6
  sec
–1
.
Kinetic energy of a-particle,
E
K
 = 
1
2
 × 6.8 × 10
–27
 × (2.6 × 10
7
)
2
= 2.3 × 10
–12
 joule.
= 
12
19
2.3 10
1.6 10
-
-
´
´
 eV olt = 14 × 10
6
 eV = 14 MeV olt.
If V is accelerating potential of a-particle, then Kinetic
energy = qV
14 × 10
6
 eV olt = 2eV (since charge on a-particle = 2e)
\ V = 
6
14 10
2
´
 = 7 × 10
6
 V olt.
(18) (a) If electron beam passes undeflected in simultaneous
electric and magnetic fields 
r
E
 and 
r
B
 velocity of beam
r
v
 much be mutually perpendicular and the required
speed v is given by-
4
3
E 1 10
v
B
2 10
-
´
==
´
 = 5 × 10
6
 m/s.
If electric field is removed, the electron traverses a
circular path of radius r given by 
2
mv
r
 = evB or r = 
mv
eB
.
Here m = 9.1 × 10
–31
 kg, v = 5 × 10
6
 m/s.
e = 1.6 × 10
–19
 coul and B = 2 × 10
–3
 weber/m
2
\ r = 
316
193
(9.1 10 ) (5 10 )
(1.6 10 ) (2 10 )
-
--
´´
´´
        = 1.43 × 10
-2
 m = 1.43 cm.
(19) (a) For L length or wire, to balance,
F
magnetic
 = mg Þ ILB = mg,
Therefore B = mg/IL = (m/L)g/I
= 
3
45 10 9.8
30
-
´´
 = 1.47 × 10
-2
 tesla.
= 147 Gauss.
(20) (b) According to Fleming's left hand rule, magnetic force
on electrons will be downward.
e
–
e
–
e
–
e
–
e
–
e
–
e
–
×
e
–
e
–
e
–
e
–
e
–
e
–
e
–
×
(21) (b) \ F = mg = Bil
or 1 × 9.8 = 0.98 × i × 1, Þ i = 10A.
(22) (b) When currents flow in two long, parallel wires in the
same direction, the wires exert a force of attraction on
each other. The magnitude of this force acting per meter
length of the wires is given by
F = 
0 12
µ ii
2R p
 = 2 × 10
–7
 
12
ii
R
 N/m.
Here i
1
 = 10 A, i
2
 = 15 A, R = 30 cm = 0.3 m
\ F = 2 × 10
–7
 
10 15
0.3
´
 = 1 × 10
–4
 N/m.
\ Force on 5m length of the wire
= 5 × (1 × 10
–4
) = (5 × 10
-4
) = 5 × 10
-4
 N (attraction).
(23) (d) The electron will pass undeviated if the electric force
and magnetic force are equal and opposite. Thus
E.e. = Bev or B = E/v but E = V/d
Therefore, 
36
V 600
B
v.d.
3 10 2 10
-
==
´ ´´
\ B = 0.1 Wb/m
2
.
The direction of field is perpendicular to the plane of
paper vertically downward.
DPP/ P 40
115
(24) (b) The component of velocity of the beam of protons,
parallel to the field direction
= v cosq = 4 × 10
5
 × cos 60º = 2 × 10
5
 m/sec.
and the component of velocity of the proton beam at
right angle to the direction of field
= v sinq = 4 × 10
5
 × sin 60º = 2
3 × 10
5
 m/sec.
therefore,the radius of circular path = (mv sinq /Be)
or  r = 
275
19
1.7 10 2 3 10
0.3 1.6 10
-
-
´ ´´
´´
= 12.26 × 10
–3
 metre
or r = 1.226 × 10
–2
 metre.
Pitch of the Helix = v cosq x (2pm/Be)
\ Pitch = 
5 27
19
2 10 2 3.14 1.7 10
0.3 1.6 10
-
-
´ ´´ ´´
´´
        = 44.5 × 10
–3
 m = 4.45 × 10
–2
 m.
(25) (a), (26) (a)
F q (v B) =´
rr
r
 = 
22
ˆ
q (x y )k -
 
Read More
74 videos|314 docs|88 tests

FAQs on Magnetic Effects of Current- 2 Practice Questions - DPP for NEET

1. What are the fundamental principles of the magnetic effects of current?
Ans. The magnetic effects of current are primarily governed by two principles: Ampère's Circuital Law and the Biot-Savart Law. Ampère's Circuital Law states that the magnetic field around a closed loop is proportional to the current passing through the loop. The Biot-Savart Law helps calculate the magnetic field produced at a point in space due to a small segment of current-carrying wire. Together, these principles explain how electric currents generate magnetic fields and how these fields interact with other currents and magnetic materials.
2. How does the direction of current affect the magnetic field created around a wire?
Ans. The direction of the electric current determines the orientation of the magnetic field lines around a wire. According to the right-hand rule, if you point your thumb in the direction of the current flow, your curled fingers will indicate the direction of the magnetic field lines. This means that reversing the current direction will also reverse the magnetic field direction, demonstrating the direct relationship between current and the magnetic field.
3. What is the significance of the right-hand rule in understanding magnetic effects of current?
Ans. The right-hand rule is a crucial mnemonic used to determine the direction of the magnetic field generated by a current-carrying conductor. By extending the right thumb in the direction of current flow and curling the fingers, one can visualize the circular magnetic field lines around the conductor. This rule is essential for solving problems related to magnetic fields and is widely applied in electromagnetic theory, making it a foundational concept in the study of physics.
4. What are solenoids and how do they relate to the magnetic effects of current?
Ans. A solenoid is a long coil of wire that generates a uniform magnetic field when an electric current passes through it. The magnetic field inside a solenoid is strong and uniform, resembling that of a bar magnet. The strength of the magnetic field can be increased by increasing the current or adding a ferromagnetic core inside the solenoid. Solenoids are commonly used in various applications, including electromagnets, inductors, and relays, highlighting their practical significance in technology.
5. How do magnetic effects of current apply to real-world technologies?
Ans. The magnetic effects of current are foundational to numerous technologies, including electric motors, generators, transformers, and inductors. For example, in electric motors, magnetic fields produced by currents interact with magnetic fields to create rotational motion. In transformers, alternating current generates a changing magnetic field that induces voltage in nearby coils. These applications illustrate how understanding magnetic effects is essential for advancements in electrical engineering and technology.
Related Searches

Sample Paper

,

Objective type Questions

,

Summary

,

Exam

,

Magnetic Effects of Current- 2 Practice Questions - DPP for NEET

,

Viva Questions

,

Semester Notes

,

Free

,

ppt

,

pdf

,

Magnetic Effects of Current- 2 Practice Questions - DPP for NEET

,

mock tests for examination

,

past year papers

,

video lectures

,

shortcuts and tricks

,

MCQs

,

practice quizzes

,

study material

,

Magnetic Effects of Current- 2 Practice Questions - DPP for NEET

,

Previous Year Questions with Solutions

,

Extra Questions

,

Important questions

;