Class 8 Exam  >  Class 8 Notes  >  ML Aggarwal: Understanding Quadrilaterals - 2

ML Aggarwal: Understanding Quadrilaterals - 2 - Class 8 PDF Download

Download, print and study this document offline
Please wait while the PDF view is loading
 Page 1


 
1. In the given figure, ABCD is a parallelogram. Complete each 
statement along with the definition or property used. 
(i) AD = ……….. 
(ii) DC = ……….. 
(iii) ?DCB = ……….. 
(iv) ?ADC = ……….. 
(v) ?DAB = ……….. 
(vi) OC = ……….. 
(vii) OB = ……….. 
(viii) m ?DAB + m ?CDA = ……….. 
 
Solution:- 
From the given figure, 
(i) AD = 6 cm … [because opposite sides of parallelogram are equal] 
(ii) DC = 9 cm … [because opposite sides of parallelogram are equal] 
(iii) ?DCB = 60
o
 
(iv) ?ADC = ?ABC = 120
o
 
(v) ?DAB = ?DCB = 60
o
 
(vi) OC = AO = 7 cm 
Page 2


 
1. In the given figure, ABCD is a parallelogram. Complete each 
statement along with the definition or property used. 
(i) AD = ……….. 
(ii) DC = ……….. 
(iii) ?DCB = ……….. 
(iv) ?ADC = ……….. 
(v) ?DAB = ……….. 
(vi) OC = ……….. 
(vii) OB = ……….. 
(viii) m ?DAB + m ?CDA = ……….. 
 
Solution:- 
From the given figure, 
(i) AD = 6 cm … [because opposite sides of parallelogram are equal] 
(ii) DC = 9 cm … [because opposite sides of parallelogram are equal] 
(iii) ?DCB = 60
o
 
(iv) ?ADC = ?ABC = 120
o
 
(v) ?DAB = ?DCB = 60
o
 
(vi) OC = AO = 7 cm 
(vii) OB = OD = 5 cm 
(viii) m ?DAB + m ?CDA = 180
o
 
 
2. Consider the following parallelograms. Find the values of x, y, z in 
each. 
(i) 
 
Solution:- 
(i) Consider parallelogram MNOP 
 
From the figure, ?POQ = 120
o
 
We know that, sum of angles linear pair is equal to 180
o
 
So, ?POQ + ?PON = 180
o
 
120
o
 + ?PON = 180
o
 
?PON = 180
o
 – 120
o
 
Page 3


 
1. In the given figure, ABCD is a parallelogram. Complete each 
statement along with the definition or property used. 
(i) AD = ……….. 
(ii) DC = ……….. 
(iii) ?DCB = ……….. 
(iv) ?ADC = ……….. 
(v) ?DAB = ……….. 
(vi) OC = ……….. 
(vii) OB = ……….. 
(viii) m ?DAB + m ?CDA = ……….. 
 
Solution:- 
From the given figure, 
(i) AD = 6 cm … [because opposite sides of parallelogram are equal] 
(ii) DC = 9 cm … [because opposite sides of parallelogram are equal] 
(iii) ?DCB = 60
o
 
(iv) ?ADC = ?ABC = 120
o
 
(v) ?DAB = ?DCB = 60
o
 
(vi) OC = AO = 7 cm 
(vii) OB = OD = 5 cm 
(viii) m ?DAB + m ?CDA = 180
o
 
 
2. Consider the following parallelograms. Find the values of x, y, z in 
each. 
(i) 
 
Solution:- 
(i) Consider parallelogram MNOP 
 
From the figure, ?POQ = 120
o
 
We know that, sum of angles linear pair is equal to 180
o
 
So, ?POQ + ?PON = 180
o
 
120
o
 + ?PON = 180
o
 
?PON = 180
o
 – 120
o
 
?PON = 60
o
 
Then, ?M = ?O = 60
o
  
… [Because opposite angles of parallelogram are equal] 
?POQ = ?MNO 
120
o
 = 120
o   
 … [because corresponding angels are equal] 
Hence, y = 120
o
 
Also, z = y 
120
o
 = 120
o
 
Therefore, x = 60
o
, y = 120
o
 and z = 120
o
 
 
(ii) 
 
Solution:- 
 
Page 4


 
1. In the given figure, ABCD is a parallelogram. Complete each 
statement along with the definition or property used. 
(i) AD = ……….. 
(ii) DC = ……….. 
(iii) ?DCB = ……….. 
(iv) ?ADC = ……….. 
(v) ?DAB = ……….. 
(vi) OC = ……….. 
(vii) OB = ……….. 
(viii) m ?DAB + m ?CDA = ……….. 
 
Solution:- 
From the given figure, 
(i) AD = 6 cm … [because opposite sides of parallelogram are equal] 
(ii) DC = 9 cm … [because opposite sides of parallelogram are equal] 
(iii) ?DCB = 60
o
 
(iv) ?ADC = ?ABC = 120
o
 
(v) ?DAB = ?DCB = 60
o
 
(vi) OC = AO = 7 cm 
(vii) OB = OD = 5 cm 
(viii) m ?DAB + m ?CDA = 180
o
 
 
2. Consider the following parallelograms. Find the values of x, y, z in 
each. 
(i) 
 
Solution:- 
(i) Consider parallelogram MNOP 
 
From the figure, ?POQ = 120
o
 
We know that, sum of angles linear pair is equal to 180
o
 
So, ?POQ + ?PON = 180
o
 
120
o
 + ?PON = 180
o
 
?PON = 180
o
 – 120
o
 
?PON = 60
o
 
Then, ?M = ?O = 60
o
  
… [Because opposite angles of parallelogram are equal] 
?POQ = ?MNO 
120
o
 = 120
o   
 … [because corresponding angels are equal] 
Hence, y = 120
o
 
Also, z = y 
120
o
 = 120
o
 
Therefore, x = 60
o
, y = 120
o
 and z = 120
o
 
 
(ii) 
 
Solution:- 
 
From the figure, it is given that ?PQO = 100
o
, ?OMN = 30
o
, ?PMO =40
o
. 
Then, ?NOM = ?OMP   … [because alternate angles are equal] 
So, z = 40
o
 
Now, ?NMO = ?POM   … [because alternate angles are equal] 
So, ?NMO = a = 30
o
 
Consider the triangle PQO, 
We know that, sum of measures of interior angles of triangle is equal to 
180
o
. 
?P + ?Q + ?O = 180
o
 
x + 100
o
 + 30
o
 = 180
o
 
x + 130
o
 = 180
o
 
x = 180
o
 – 130
o
 
x = 50
o
 
Then, exterior angle ?OQP = y + z 
100
o
 = y + 40
o
 
By transposing we get, 
y = 100
o
 – 40
o
 
y = 60
o
 
Therefore, the value of x = 50
o
, y = 60
o
 and z = 40
o
. 
(iii) 
Page 5


 
1. In the given figure, ABCD is a parallelogram. Complete each 
statement along with the definition or property used. 
(i) AD = ……….. 
(ii) DC = ……….. 
(iii) ?DCB = ……….. 
(iv) ?ADC = ……….. 
(v) ?DAB = ……….. 
(vi) OC = ……….. 
(vii) OB = ……….. 
(viii) m ?DAB + m ?CDA = ……….. 
 
Solution:- 
From the given figure, 
(i) AD = 6 cm … [because opposite sides of parallelogram are equal] 
(ii) DC = 9 cm … [because opposite sides of parallelogram are equal] 
(iii) ?DCB = 60
o
 
(iv) ?ADC = ?ABC = 120
o
 
(v) ?DAB = ?DCB = 60
o
 
(vi) OC = AO = 7 cm 
(vii) OB = OD = 5 cm 
(viii) m ?DAB + m ?CDA = 180
o
 
 
2. Consider the following parallelograms. Find the values of x, y, z in 
each. 
(i) 
 
Solution:- 
(i) Consider parallelogram MNOP 
 
From the figure, ?POQ = 120
o
 
We know that, sum of angles linear pair is equal to 180
o
 
So, ?POQ + ?PON = 180
o
 
120
o
 + ?PON = 180
o
 
?PON = 180
o
 – 120
o
 
?PON = 60
o
 
Then, ?M = ?O = 60
o
  
… [Because opposite angles of parallelogram are equal] 
?POQ = ?MNO 
120
o
 = 120
o   
 … [because corresponding angels are equal] 
Hence, y = 120
o
 
Also, z = y 
120
o
 = 120
o
 
Therefore, x = 60
o
, y = 120
o
 and z = 120
o
 
 
(ii) 
 
Solution:- 
 
From the figure, it is given that ?PQO = 100
o
, ?OMN = 30
o
, ?PMO =40
o
. 
Then, ?NOM = ?OMP   … [because alternate angles are equal] 
So, z = 40
o
 
Now, ?NMO = ?POM   … [because alternate angles are equal] 
So, ?NMO = a = 30
o
 
Consider the triangle PQO, 
We know that, sum of measures of interior angles of triangle is equal to 
180
o
. 
?P + ?Q + ?O = 180
o
 
x + 100
o
 + 30
o
 = 180
o
 
x + 130
o
 = 180
o
 
x = 180
o
 – 130
o
 
x = 50
o
 
Then, exterior angle ?OQP = y + z 
100
o
 = y + 40
o
 
By transposing we get, 
y = 100
o
 – 40
o
 
y = 60
o
 
Therefore, the value of x = 50
o
, y = 60
o
 and z = 40
o
. 
(iii) 
 
Solution:- 
 
From the above figure, 
?SPR = ?PRQ 
35
o
 = 35
o
    … [because alternate angles are equal] 
Now consider the triangle PQR, 
We know that, sum of measures of interior angles of triangle is equal to 
180
o
. 
?RPQ + ?PQR + ?PRQ = 180
o
 
z + 120
o
 + 35
o
 = 180
o
 
z + 155
o
 = 180
o
 
z = 180
o
 – 155
o
 
z = 25
o
 
Then, ?QPR = ?PRQ 
Z = x 
Read More
Download as PDF

Top Courses for Class 8

Related Searches

video lectures

,

ppt

,

pdf

,

ML Aggarwal: Understanding Quadrilaterals - 2 - Class 8

,

ML Aggarwal: Understanding Quadrilaterals - 2 - Class 8

,

practice quizzes

,

mock tests for examination

,

past year papers

,

Summary

,

Important questions

,

MCQs

,

ML Aggarwal: Understanding Quadrilaterals - 2 - Class 8

,

shortcuts and tricks

,

Objective type Questions

,

Sample Paper

,

Previous Year Questions with Solutions

,

Viva Questions

,

study material

,

Exam

,

Extra Questions

,

Semester Notes

,

Free

;