Download, print and study this document offline |
Page 1 KEY POINTS ? A radian is an angle subtended at the centre of a circle by an arc whose length is equal to the radius of the circle. We denote 1 radian by 1 c . ? ? radian = 180 degree, 1° = 60’ 1 radian = 180 ? degree and 1’ = 60’ ’ 1 degree = 180 ? radian ? If an arc of length l makes an angle qradian at the centre of a circle of radius r, we have l r ? ? Page 2 KEY POINTS ? A radian is an angle subtended at the centre of a circle by an arc whose length is equal to the radius of the circle. We denote 1 radian by 1 c . ? ? radian = 180 degree, 1° = 60’ 1 radian = 180 ? degree and 1’ = 60’ ’ 1 degree = 180 ? radian ? If an arc of length l makes an angle qradian at the centre of a circle of radius r, we have l r ? ? Some Standard Results ? sin (x + y) = sinx cosy + cosx siny cos (x + y) = cosx cosy — sinx siny ta n ta n ta n(x + y) 1 ta n .ta n x y x y ? ? ? Page 3 KEY POINTS ? A radian is an angle subtended at the centre of a circle by an arc whose length is equal to the radius of the circle. We denote 1 radian by 1 c . ? ? radian = 180 degree, 1° = 60’ 1 radian = 180 ? degree and 1’ = 60’ ’ 1 degree = 180 ? radian ? If an arc of length l makes an angle qradian at the centre of a circle of radius r, we have l r ? ? Some Standard Results ? sin (x + y) = sinx cosy + cosx siny cos (x + y) = cosx cosy — sinx siny ta n ta n ta n(x + y) 1 ta n .ta n x y x y ? ? ? cot(x +y) = cot x.cot y-1 coty + cotx ? sin (x — y) = sinx cosy — cosx siny cos (x — y) = cosx cosy + sinx siny ta n ta n ta n(x— y) 1 ta n .ta n x y x y ? ? ? cot .cot 1 cot(x— y) cot cot x y y x ? ? ? ? tan(x +y + z) = ta n ta n ta n ta n ta n ta n 1 ta n ta n ta n .ta n ta n ta n x y z x y z x y y z z x ? ? ? ? ? ? ? 2sinx cosy = sin(x + y) + sin(x — y) 2cosx siny = sin(x + y) — sin(x — y) 2cosx cosy = cos(x + y) + cos(x — y) 2sinx siny = cos(x — y) — cos(x + y) ? sin x + sin y = 2 sin 2 x y ? cos 2 x y ? sin x — sin y = 2 cos 2 x y ? sin 2 x y ? cos x +cos y = 2 cos 2 x y ? cos 2 x y ? cos x — cos y = — 2 sin 2 x y ? sin 2 x y ? 2sin s in 2 2 x y y x ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? Page 4 KEY POINTS ? A radian is an angle subtended at the centre of a circle by an arc whose length is equal to the radius of the circle. We denote 1 radian by 1 c . ? ? radian = 180 degree, 1° = 60’ 1 radian = 180 ? degree and 1’ = 60’ ’ 1 degree = 180 ? radian ? If an arc of length l makes an angle qradian at the centre of a circle of radius r, we have l r ? ? Some Standard Results ? sin (x + y) = sinx cosy + cosx siny cos (x + y) = cosx cosy — sinx siny ta n ta n ta n(x + y) 1 ta n .ta n x y x y ? ? ? cot(x +y) = cot x.cot y-1 coty + cotx ? sin (x — y) = sinx cosy — cosx siny cos (x — y) = cosx cosy + sinx siny ta n ta n ta n(x— y) 1 ta n .ta n x y x y ? ? ? cot .cot 1 cot(x— y) cot cot x y y x ? ? ? ? tan(x +y + z) = ta n ta n ta n ta n ta n ta n 1 ta n ta n ta n .ta n ta n ta n x y z x y z x y y z z x ? ? ? ? ? ? ? 2sinx cosy = sin(x + y) + sin(x — y) 2cosx siny = sin(x + y) — sin(x — y) 2cosx cosy = cos(x + y) + cos(x — y) 2sinx siny = cos(x — y) — cos(x + y) ? sin x + sin y = 2 sin 2 x y ? cos 2 x y ? sin x — sin y = 2 cos 2 x y ? sin 2 x y ? cos x +cos y = 2 cos 2 x y ? cos 2 x y ? cos x — cos y = — 2 sin 2 x y ? sin 2 x y ? 2sin s in 2 2 x y y x ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? sin 2x = 2 sin x cos x = 2 2 tan 1 tan x x ? ? cos 2x = cos 2 x — sin 2 x = 2 cos 2 x — 1 = 1 — 2sin 2 x = 2 2 1 ta n 1 ta n x x ? ? ? tan 2x = 2 2 tan 1 tan x x ? ? sin 3x = 3 sinx — 4 sin 3 x ? cos 3x = 4 cos 3 x — 3 cos x ? tan 3x = 3 2 3ta n ta n 1 3ta n x x x ? ? ? sin(x + y) sin(x — y) = sin 2 x — sin 2 y= cos 2 y — cos 2 x ? cos(x + y) cos(x — y) = cos 2 x — sin 2 y= cos 2 y — sin 2 x ? General solution — A solution of a trigonometric equation, generalised by means of periodicity, is known as the general solution. ? Principal solutions — The solutions of a trigonometric equation which lie in [0,2 ?) are called its principal solutions. ? sin ? = 0 ? ? ?? = n ? ? ? where ? n ? ? z ? cos ? = 0 ? ? ? ? = (2n ? ? ? 2 ? , where n ? ? z ? tan ? = 0 ? ? ?? = n ? ? ? where ? n ? ? z ? sin ? = sin ? ? ? ? ? = n ? ? ?(— 1) n ? ? where n ? z ? cos ? = cos ? ? ? ? ?? = 2n ? ? ? ? ? ? where n ? ? z ? tan ? = tan ? ? ? ? ?? = n ? ? ? ? ? ? where n ? ? z Page 5 KEY POINTS ? A radian is an angle subtended at the centre of a circle by an arc whose length is equal to the radius of the circle. We denote 1 radian by 1 c . ? ? radian = 180 degree, 1° = 60’ 1 radian = 180 ? degree and 1’ = 60’ ’ 1 degree = 180 ? radian ? If an arc of length l makes an angle qradian at the centre of a circle of radius r, we have l r ? ? Some Standard Results ? sin (x + y) = sinx cosy + cosx siny cos (x + y) = cosx cosy — sinx siny ta n ta n ta n(x + y) 1 ta n .ta n x y x y ? ? ? cot(x +y) = cot x.cot y-1 coty + cotx ? sin (x — y) = sinx cosy — cosx siny cos (x — y) = cosx cosy + sinx siny ta n ta n ta n(x— y) 1 ta n .ta n x y x y ? ? ? cot .cot 1 cot(x— y) cot cot x y y x ? ? ? ? tan(x +y + z) = ta n ta n ta n ta n ta n ta n 1 ta n ta n ta n .ta n ta n ta n x y z x y z x y y z z x ? ? ? ? ? ? ? 2sinx cosy = sin(x + y) + sin(x — y) 2cosx siny = sin(x + y) — sin(x — y) 2cosx cosy = cos(x + y) + cos(x — y) 2sinx siny = cos(x — y) — cos(x + y) ? sin x + sin y = 2 sin 2 x y ? cos 2 x y ? sin x — sin y = 2 cos 2 x y ? sin 2 x y ? cos x +cos y = 2 cos 2 x y ? cos 2 x y ? cos x — cos y = — 2 sin 2 x y ? sin 2 x y ? 2sin s in 2 2 x y y x ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? sin 2x = 2 sin x cos x = 2 2 tan 1 tan x x ? ? cos 2x = cos 2 x — sin 2 x = 2 cos 2 x — 1 = 1 — 2sin 2 x = 2 2 1 ta n 1 ta n x x ? ? ? tan 2x = 2 2 tan 1 tan x x ? ? sin 3x = 3 sinx — 4 sin 3 x ? cos 3x = 4 cos 3 x — 3 cos x ? tan 3x = 3 2 3ta n ta n 1 3ta n x x x ? ? ? sin(x + y) sin(x — y) = sin 2 x — sin 2 y= cos 2 y — cos 2 x ? cos(x + y) cos(x — y) = cos 2 x — sin 2 y= cos 2 y — sin 2 x ? General solution — A solution of a trigonometric equation, generalised by means of periodicity, is known as the general solution. ? Principal solutions — The solutions of a trigonometric equation which lie in [0,2 ?) are called its principal solutions. ? sin ? = 0 ? ? ?? = n ? ? ? where ? n ? ? z ? cos ? = 0 ? ? ? ? = (2n ? ? ? 2 ? , where n ? ? z ? tan ? = 0 ? ? ?? = n ? ? ? where ? n ? ? z ? sin ? = sin ? ? ? ? ? = n ? ? ?(— 1) n ? ? where n ? z ? cos ? = cos ? ? ? ? ?? = 2n ? ? ? ? ? ? where n ? ? z ? tan ? = tan ? ? ? ? ?? = n ? ? ? ? ? ? where n ? ? z 5 1 sin18 4 ? ? ? ; 10 2 5 cos18 4 ? ? ? 10 2 5 5 1 sin36 ; cos36 4 4 ? ? ? ? ? ?Read More
209 videos|443 docs|143 tests
|
1. What are the main trigonometric functions? |
2. How are trigonometric functions used in real-life applications? |
3. What is the unit circle and its relationship with trigonometric functions? |
4. How are trigonometric functions related to right-angled triangles? |
5. How can trigonometric functions be used to solve problems involving angles and sides in triangles? |
209 videos|443 docs|143 tests
|
|
Explore Courses for JEE exam
|