Download, print and study this document offline |
Page 1 Page # 14 INDEFINITE INTEGRATION 1. If f & g are functions of x such that g ?(x) = f(x) then, ? f(x) dx = g(x) + c ? ? d dx {g(x)+c} = f(x), where c is called the constant of integration. 2. Standard Formula: (i) ? (ax + b) n dx = ? ? ? ? ax b a n n ? ? ?1 1 + c, n ? ?1 (ii) ? dx ax b ? = 1 a ?n (ax + b) + c (iii) ? e ax+b dx = 1 a e ax+b + c (iv) ? a px+q dx = 1 p a na px q ? ? + c; a > 0 (v) ? sin (ax + b) dx = ? 1 a cos (ax + b) + c (vi) ? cos (ax + b) dx = 1 a sin (ax + b) + c (vii) ? tan(ax + b) dx = 1 a ?n sec (ax + b) + c (viii) ? cot(ax + b) dx = 1 a ?n sin(ax + b)+ c (ix) ? sec² (ax + b) dx = 1 a tan(ax + b) + c (x) ? cosec²(ax + b) dx = ? 1 a cot(ax + b)+ c Page 2 Page # 14 INDEFINITE INTEGRATION 1. If f & g are functions of x such that g ?(x) = f(x) then, ? f(x) dx = g(x) + c ? ? d dx {g(x)+c} = f(x), where c is called the constant of integration. 2. Standard Formula: (i) ? (ax + b) n dx = ? ? ? ? ax b a n n ? ? ?1 1 + c, n ? ?1 (ii) ? dx ax b ? = 1 a ?n (ax + b) + c (iii) ? e ax+b dx = 1 a e ax+b + c (iv) ? a px+q dx = 1 p a na px q ? ? + c; a > 0 (v) ? sin (ax + b) dx = ? 1 a cos (ax + b) + c (vi) ? cos (ax + b) dx = 1 a sin (ax + b) + c (vii) ? tan(ax + b) dx = 1 a ?n sec (ax + b) + c (viii) ? cot(ax + b) dx = 1 a ?n sin(ax + b)+ c (ix) ? sec² (ax + b) dx = 1 a tan(ax + b) + c (x) ? cosec²(ax + b) dx = ? 1 a cot(ax + b)+ c Page # 15 (xi) ? secx dx = ?n (secx + tanx) + c OR ?n tan ? 4 2 ? ? ? ? ? ? ? x + c (xii) ? cosec x dx = ?n (cosecx ? cotx) + c OR ?n tan x 2 + c OR ? ?n (cosecx + cotx) + c (xiii) ? d x a x 2 2 ? = sin ?1 x a + c (xiv) ? d x a x 2 2 ? = 1 a tan ?1 x a + c (xv) ? 2 2 a x | x | x d ? = 1 a sec ?1 x a + c (xvi) ? ? 2 2 a x x d = ?n ? ? x x a ? ? 2 2 + c (xvii) ? d x x a 2 2 ? = ?n ? ? x x a ? ? 2 2 + c (xviii) ? d x a x 2 2 ? = 1 2a ?n x a x a ? ? + c (xix) ? d x x a 2 2 ? = 1 2a ?n a x a x ? ? + c (xx) ? a x 2 2 ? dx = x 2 a x 2 2 ? + a 2 2 sin ?1 x a + c (xxi) ? x a 2 2 ? dx = x 2 x a 2 2 ? + a 2 2 ?n ? ? ? ? ? ? ? ? ? ? a a x x 2 2 + c (xxii) ? x a 2 2 ? dx = x 2 x a 2 2 ? ? a 2 2 ?n ? ? ? ? ? ? ? ? ? ? a a x x 2 2 + c Page 3 Page # 14 INDEFINITE INTEGRATION 1. If f & g are functions of x such that g ?(x) = f(x) then, ? f(x) dx = g(x) + c ? ? d dx {g(x)+c} = f(x), where c is called the constant of integration. 2. Standard Formula: (i) ? (ax + b) n dx = ? ? ? ? ax b a n n ? ? ?1 1 + c, n ? ?1 (ii) ? dx ax b ? = 1 a ?n (ax + b) + c (iii) ? e ax+b dx = 1 a e ax+b + c (iv) ? a px+q dx = 1 p a na px q ? ? + c; a > 0 (v) ? sin (ax + b) dx = ? 1 a cos (ax + b) + c (vi) ? cos (ax + b) dx = 1 a sin (ax + b) + c (vii) ? tan(ax + b) dx = 1 a ?n sec (ax + b) + c (viii) ? cot(ax + b) dx = 1 a ?n sin(ax + b)+ c (ix) ? sec² (ax + b) dx = 1 a tan(ax + b) + c (x) ? cosec²(ax + b) dx = ? 1 a cot(ax + b)+ c Page # 15 (xi) ? secx dx = ?n (secx + tanx) + c OR ?n tan ? 4 2 ? ? ? ? ? ? ? x + c (xii) ? cosec x dx = ?n (cosecx ? cotx) + c OR ?n tan x 2 + c OR ? ?n (cosecx + cotx) + c (xiii) ? d x a x 2 2 ? = sin ?1 x a + c (xiv) ? d x a x 2 2 ? = 1 a tan ?1 x a + c (xv) ? 2 2 a x | x | x d ? = 1 a sec ?1 x a + c (xvi) ? ? 2 2 a x x d = ?n ? ? x x a ? ? 2 2 + c (xvii) ? d x x a 2 2 ? = ?n ? ? x x a ? ? 2 2 + c (xviii) ? d x a x 2 2 ? = 1 2a ?n x a x a ? ? + c (xix) ? d x x a 2 2 ? = 1 2a ?n a x a x ? ? + c (xx) ? a x 2 2 ? dx = x 2 a x 2 2 ? + a 2 2 sin ?1 x a + c (xxi) ? x a 2 2 ? dx = x 2 x a 2 2 ? + a 2 2 ?n ? ? ? ? ? ? ? ? ? ? a a x x 2 2 + c (xxii) ? x a 2 2 ? dx = x 2 x a 2 2 ? ? a 2 2 ?n ? ? ? ? ? ? ? ? ? ? a a x x 2 2 + c Page # 16 3. If we subsitute f(x) = t, then f ?(x) dx = dt 4. Integration by Part : ? ? ? ) x ( g ) x ( f dx = f(x) ? ? ? ) x ( g dx – ? ? ? ? dx dx ) x ( g ) x ( f dx d ? ? ? ? ? ? ? ? 5. Integration of type 2 2 2 dx dx , , ax bx c dx ax bx c ax bx c ? ? ? ? ? ? ? ? ? Make the substitution b x t 2a ? ? 6. Integration of type 2 2 2 pxq pxq dx, dx, (px q) ax bx c dx ax bx c ax bx c ? ? ? ? ? ? ? ? ? ? ? ? Make the substitution x + b 2a = t , then split the integral as some of two integrals one containing the linear term and the other containing constant term. 7. Integration of trigonometric functions (i) 2 dx a bsin x ? ? OR 2 dx a bcos x ? ? OR 2 2 dx asin x bsinx cosx ccos x ? ? ? put tan x = t. (ii) dx a bsinx ? ? OR dx a bcos x ? ? OR dx a bsinx c cos x ? ? ? put tan x 2 = t (iii) a.cos x b.sin x c .cosx m.sinx n ? ? ? ? ? ? dx. Express Nr ? A(Dr) + B d dx (Dr) + c & proceed. Page 4 Page # 14 INDEFINITE INTEGRATION 1. If f & g are functions of x such that g ?(x) = f(x) then, ? f(x) dx = g(x) + c ? ? d dx {g(x)+c} = f(x), where c is called the constant of integration. 2. Standard Formula: (i) ? (ax + b) n dx = ? ? ? ? ax b a n n ? ? ?1 1 + c, n ? ?1 (ii) ? dx ax b ? = 1 a ?n (ax + b) + c (iii) ? e ax+b dx = 1 a e ax+b + c (iv) ? a px+q dx = 1 p a na px q ? ? + c; a > 0 (v) ? sin (ax + b) dx = ? 1 a cos (ax + b) + c (vi) ? cos (ax + b) dx = 1 a sin (ax + b) + c (vii) ? tan(ax + b) dx = 1 a ?n sec (ax + b) + c (viii) ? cot(ax + b) dx = 1 a ?n sin(ax + b)+ c (ix) ? sec² (ax + b) dx = 1 a tan(ax + b) + c (x) ? cosec²(ax + b) dx = ? 1 a cot(ax + b)+ c Page # 15 (xi) ? secx dx = ?n (secx + tanx) + c OR ?n tan ? 4 2 ? ? ? ? ? ? ? x + c (xii) ? cosec x dx = ?n (cosecx ? cotx) + c OR ?n tan x 2 + c OR ? ?n (cosecx + cotx) + c (xiii) ? d x a x 2 2 ? = sin ?1 x a + c (xiv) ? d x a x 2 2 ? = 1 a tan ?1 x a + c (xv) ? 2 2 a x | x | x d ? = 1 a sec ?1 x a + c (xvi) ? ? 2 2 a x x d = ?n ? ? x x a ? ? 2 2 + c (xvii) ? d x x a 2 2 ? = ?n ? ? x x a ? ? 2 2 + c (xviii) ? d x a x 2 2 ? = 1 2a ?n x a x a ? ? + c (xix) ? d x x a 2 2 ? = 1 2a ?n a x a x ? ? + c (xx) ? a x 2 2 ? dx = x 2 a x 2 2 ? + a 2 2 sin ?1 x a + c (xxi) ? x a 2 2 ? dx = x 2 x a 2 2 ? + a 2 2 ?n ? ? ? ? ? ? ? ? ? ? a a x x 2 2 + c (xxii) ? x a 2 2 ? dx = x 2 x a 2 2 ? ? a 2 2 ?n ? ? ? ? ? ? ? ? ? ? a a x x 2 2 + c Page # 16 3. If we subsitute f(x) = t, then f ?(x) dx = dt 4. Integration by Part : ? ? ? ) x ( g ) x ( f dx = f(x) ? ? ? ) x ( g dx – ? ? ? ? dx dx ) x ( g ) x ( f dx d ? ? ? ? ? ? ? ? 5. Integration of type 2 2 2 dx dx , , ax bx c dx ax bx c ax bx c ? ? ? ? ? ? ? ? ? Make the substitution b x t 2a ? ? 6. Integration of type 2 2 2 pxq pxq dx, dx, (px q) ax bx c dx ax bx c ax bx c ? ? ? ? ? ? ? ? ? ? ? ? Make the substitution x + b 2a = t , then split the integral as some of two integrals one containing the linear term and the other containing constant term. 7. Integration of trigonometric functions (i) 2 dx a bsin x ? ? OR 2 dx a bcos x ? ? OR 2 2 dx asin x bsinx cosx ccos x ? ? ? put tan x = t. (ii) dx a bsinx ? ? OR dx a bcos x ? ? OR dx a bsinx c cos x ? ? ? put tan x 2 = t (iii) a.cos x b.sin x c .cosx m.sinx n ? ? ? ? ? ? dx. Express Nr ? A(Dr) + B d dx (Dr) + c & proceed. Page # 17 8. 2 4 2 x 1 dx x Kx 1 ? ? ? ? where K is any constant. Divide Nr & Dr by x² & put x ? 1 x = t. 9. Integration of type dx (ax b) px q ? ? ? OR 2 dx (ax bx c) px q ? ? ? ? ; put px + q = t 2 . 10. Integration of type 2 dx (ax b) px qx r ? ? ? ? , put ax + b = 1 t ; 2 2 dx (ax b) px q ? ? ? , put x = 1 tRead More
209 videos|443 docs|143 tests
|
209 videos|443 docs|143 tests
|
|
Explore Courses for JEE exam
|