Short Notes: Calculus | Short Notes for Electrical Engineering - Electrical Engineering (EE) PDF Download

Download, print and study this document offline
Please wait while the PDF view is loading
 Page 1


 
 
 
 
 
CALCULUS 
 
  Important Series Expansion  
a. ? ?
n
n
n
r  0
r
r
1 x C x
?
??
?
    
b. ? ?
1
2
1 x 1 x x ............
?
? ? ? ? ?   
c. ? ? ? ?
23
23
x
xx
a 1 x log a xloga xloga ................
2! 3!
? ? ? ? ?  
d. 
35
xx
sinx x   .................
3! 5!
? ? ?    
e. ??
24
xx
cosx 1 +  ......................
2! 4!
      
f. tan x = 
3
5
2
x
x + x + .........
3!
15
?    
g. log (1 + x) = 
23
xx
x +  + ............, x < 1
23
?   
 
  Important Limits  
 
a. 
lt
sinx
    1
x0 x
?
?
     
b.  
lt
tanx
     1
x0 x
?
?
       
c. ? ?
1
n
x
lt
  1 nx e
x0
??
?
 
d. 
lt
 cos x  1
x0
?
?
             
e. ? ?
1
x
lt
 1 x  e
x0
??
?
     
f. 
? ?
??
??
x
lt
1
 1 e
x
x
   
 
L – Hospitals Rule  
 If f (x) and g(x) are to function such that  
     ? ?
lt
 f x 0
xa
?
?
    and   ? ?
lt
 g x 0
xa
?
?
   
Page 2


 
 
 
 
 
CALCULUS 
 
  Important Series Expansion  
a. ? ?
n
n
n
r  0
r
r
1 x C x
?
??
?
    
b. ? ?
1
2
1 x 1 x x ............
?
? ? ? ? ?   
c. ? ? ? ?
23
23
x
xx
a 1 x log a xloga xloga ................
2! 3!
? ? ? ? ?  
d. 
35
xx
sinx x   .................
3! 5!
? ? ?    
e. ??
24
xx
cosx 1 +  ......................
2! 4!
      
f. tan x = 
3
5
2
x
x + x + .........
3!
15
?    
g. log (1 + x) = 
23
xx
x +  + ............, x < 1
23
?   
 
  Important Limits  
 
a. 
lt
sinx
    1
x0 x
?
?
     
b.  
lt
tanx
     1
x0 x
?
?
       
c. ? ?
1
n
x
lt
  1 nx e
x0
??
?
 
d. 
lt
 cos x  1
x0
?
?
             
e. ? ?
1
x
lt
 1 x  e
x0
??
?
     
f. 
? ?
??
??
x
lt
1
 1 e
x
x
   
 
L – Hospitals Rule  
 If f (x) and g(x) are to function such that  
     ? ?
lt
 f x 0
xa
?
?
    and   ? ?
lt
 g x 0
xa
?
?
   
 
 
 
 
    
 Then  
? ?
? ?
? ?
? ?
lt lt f x f' x
    
x a x a g x g' x
?
??
    
 If f’(x) and g’(x) are also zero asxa ? , then we can take successive derivatives till this  
 condition is violated.  
 
 For continuity, ? ? ? ?
lim
f x =f a
xa ?
   
 For differentiability,  
? ? ? ?
0 0
f x h f x lim
h0 h
??
??
??
?
??
??
  exists and is equal to ? ?
0
f' x  
If a function is differentiable at some point then it is continuous at that point but converse 
may not be true.  
 
Mean Value Theorems  
? Rolle’s Theorem  
If there is a function f(x) such that f(x) is continuous in closed interval a = x = b and f’(x) 
is existing at every point in open interval a < x < b and f(a) = f(b).  
     Then, there exists a point ‘c’ such that f’(c) = 0 and a < c < b. 
 
? Lagrange’s Mean value Theorem 
If there is a function f(x) such that, f(x) is continuous in closed interval  a = x = b; and f(x) is 
differentiable in open interval (a, b) i.e., a < x < b,  
Then there exists a point ‘c’,  such that 
     ? ?
? ? ? ?
? ?
f b f a
f' c
ba
?
?
?
   
  
Differentiation  
  
 Properties:  (f + g)’ = f’ + g’ ;  (f – g)’ = f’ – g’ ; (f g)’ = f’ g + f g’  
  
 Important derivatives  
a. 
n
x
 ? n 
n  1
x
?
        
b. 
1
nx
x
?
    
c. 
? ?
?
aa
1
log x  (log e)
x
   
d. 
xx
e  e ?
    
Page 3


 
 
 
 
 
CALCULUS 
 
  Important Series Expansion  
a. ? ?
n
n
n
r  0
r
r
1 x C x
?
??
?
    
b. ? ?
1
2
1 x 1 x x ............
?
? ? ? ? ?   
c. ? ? ? ?
23
23
x
xx
a 1 x log a xloga xloga ................
2! 3!
? ? ? ? ?  
d. 
35
xx
sinx x   .................
3! 5!
? ? ?    
e. ??
24
xx
cosx 1 +  ......................
2! 4!
      
f. tan x = 
3
5
2
x
x + x + .........
3!
15
?    
g. log (1 + x) = 
23
xx
x +  + ............, x < 1
23
?   
 
  Important Limits  
 
a. 
lt
sinx
    1
x0 x
?
?
     
b.  
lt
tanx
     1
x0 x
?
?
       
c. ? ?
1
n
x
lt
  1 nx e
x0
??
?
 
d. 
lt
 cos x  1
x0
?
?
             
e. ? ?
1
x
lt
 1 x  e
x0
??
?
     
f. 
? ?
??
??
x
lt
1
 1 e
x
x
   
 
L – Hospitals Rule  
 If f (x) and g(x) are to function such that  
     ? ?
lt
 f x 0
xa
?
?
    and   ? ?
lt
 g x 0
xa
?
?
   
 
 
 
 
    
 Then  
? ?
? ?
? ?
? ?
lt lt f x f' x
    
x a x a g x g' x
?
??
    
 If f’(x) and g’(x) are also zero asxa ? , then we can take successive derivatives till this  
 condition is violated.  
 
 For continuity, ? ? ? ?
lim
f x =f a
xa ?
   
 For differentiability,  
? ? ? ?
0 0
f x h f x lim
h0 h
??
??
??
?
??
??
  exists and is equal to ? ?
0
f' x  
If a function is differentiable at some point then it is continuous at that point but converse 
may not be true.  
 
Mean Value Theorems  
? Rolle’s Theorem  
If there is a function f(x) such that f(x) is continuous in closed interval a = x = b and f’(x) 
is existing at every point in open interval a < x < b and f(a) = f(b).  
     Then, there exists a point ‘c’ such that f’(c) = 0 and a < c < b. 
 
? Lagrange’s Mean value Theorem 
If there is a function f(x) such that, f(x) is continuous in closed interval  a = x = b; and f(x) is 
differentiable in open interval (a, b) i.e., a < x < b,  
Then there exists a point ‘c’,  such that 
     ? ?
? ? ? ?
? ?
f b f a
f' c
ba
?
?
?
   
  
Differentiation  
  
 Properties:  (f + g)’ = f’ + g’ ;  (f – g)’ = f’ – g’ ; (f g)’ = f’ g + f g’  
  
 Important derivatives  
a. 
n
x
 ? n 
n  1
x
?
        
b. 
1
nx
x
?
    
c. 
? ?
?
aa
1
log x  (log e)
x
   
d. 
xx
e  e ?
    
 
 
 
 
 
e. 
xx
e
a  a log a ?
  
f. sin x  ? cos x  
g. cos x ? -sin x  
h. tan x ?  
2
sec x
  
i. sec x ?   sec x tan x  
j. cosec x ?  - cosec x cot x  
k. cot x ?  - cosec
2
 x  
l. sin h x ? cos h x  
m. cos h x ?  sin h x  
n. 
?
?
1
2
1
sin x  
1 - x
 
o. 
2
1
-1
cos x  
1x
?
?
?
 
   
p. 
?
?
?
2
1
1
tan x  
1x
 
 
q. 
2
1
-1
cosec x  
x x 1
?
?
?
  
r. 
?
?
?
2
1
1
sec x  
x x 1
   
s. 
1
2
-1
cot x  
1x
?
?
?
      
 
 
Increasing & Decreasing Functions  
? ? ? f' x 0 V ? ? ? x a, b ? , then f is increasing in [a, b] 
? ? ? f' x 0 V ? ? ? x a, b ? , then f is strictly increasing in [a, b] 
? ? ? f' x 0 V ? ? ? x a, b ? , then f is decreasing in [a, b] 
? ? ? f' x 0 V ? ? ? x a, b ? , then f is strictly decreasing in [a, b] 
 
 
 
 
Page 4


 
 
 
 
 
CALCULUS 
 
  Important Series Expansion  
a. ? ?
n
n
n
r  0
r
r
1 x C x
?
??
?
    
b. ? ?
1
2
1 x 1 x x ............
?
? ? ? ? ?   
c. ? ? ? ?
23
23
x
xx
a 1 x log a xloga xloga ................
2! 3!
? ? ? ? ?  
d. 
35
xx
sinx x   .................
3! 5!
? ? ?    
e. ??
24
xx
cosx 1 +  ......................
2! 4!
      
f. tan x = 
3
5
2
x
x + x + .........
3!
15
?    
g. log (1 + x) = 
23
xx
x +  + ............, x < 1
23
?   
 
  Important Limits  
 
a. 
lt
sinx
    1
x0 x
?
?
     
b.  
lt
tanx
     1
x0 x
?
?
       
c. ? ?
1
n
x
lt
  1 nx e
x0
??
?
 
d. 
lt
 cos x  1
x0
?
?
             
e. ? ?
1
x
lt
 1 x  e
x0
??
?
     
f. 
? ?
??
??
x
lt
1
 1 e
x
x
   
 
L – Hospitals Rule  
 If f (x) and g(x) are to function such that  
     ? ?
lt
 f x 0
xa
?
?
    and   ? ?
lt
 g x 0
xa
?
?
   
 
 
 
 
    
 Then  
? ?
? ?
? ?
? ?
lt lt f x f' x
    
x a x a g x g' x
?
??
    
 If f’(x) and g’(x) are also zero asxa ? , then we can take successive derivatives till this  
 condition is violated.  
 
 For continuity, ? ? ? ?
lim
f x =f a
xa ?
   
 For differentiability,  
? ? ? ?
0 0
f x h f x lim
h0 h
??
??
??
?
??
??
  exists and is equal to ? ?
0
f' x  
If a function is differentiable at some point then it is continuous at that point but converse 
may not be true.  
 
Mean Value Theorems  
? Rolle’s Theorem  
If there is a function f(x) such that f(x) is continuous in closed interval a = x = b and f’(x) 
is existing at every point in open interval a < x < b and f(a) = f(b).  
     Then, there exists a point ‘c’ such that f’(c) = 0 and a < c < b. 
 
? Lagrange’s Mean value Theorem 
If there is a function f(x) such that, f(x) is continuous in closed interval  a = x = b; and f(x) is 
differentiable in open interval (a, b) i.e., a < x < b,  
Then there exists a point ‘c’,  such that 
     ? ?
? ? ? ?
? ?
f b f a
f' c
ba
?
?
?
   
  
Differentiation  
  
 Properties:  (f + g)’ = f’ + g’ ;  (f – g)’ = f’ – g’ ; (f g)’ = f’ g + f g’  
  
 Important derivatives  
a. 
n
x
 ? n 
n  1
x
?
        
b. 
1
nx
x
?
    
c. 
? ?
?
aa
1
log x  (log e)
x
   
d. 
xx
e  e ?
    
 
 
 
 
 
e. 
xx
e
a  a log a ?
  
f. sin x  ? cos x  
g. cos x ? -sin x  
h. tan x ?  
2
sec x
  
i. sec x ?   sec x tan x  
j. cosec x ?  - cosec x cot x  
k. cot x ?  - cosec
2
 x  
l. sin h x ? cos h x  
m. cos h x ?  sin h x  
n. 
?
?
1
2
1
sin x  
1 - x
 
o. 
2
1
-1
cos x  
1x
?
?
?
 
   
p. 
?
?
?
2
1
1
tan x  
1x
 
 
q. 
2
1
-1
cosec x  
x x 1
?
?
?
  
r. 
?
?
?
2
1
1
sec x  
x x 1
   
s. 
1
2
-1
cot x  
1x
?
?
?
      
 
 
Increasing & Decreasing Functions  
? ? ? f' x 0 V ? ? ? x a, b ? , then f is increasing in [a, b] 
? ? ? f' x 0 V ? ? ? x a, b ? , then f is strictly increasing in [a, b] 
? ? ? f' x 0 V ? ? ? x a, b ? , then f is decreasing in [a, b] 
? ? ? f' x 0 V ? ? ? x a, b ? , then f is strictly decreasing in [a, b] 
 
 
 
 
 
 
 
 
 
Maxima & Minima  
  Local maxima or minima    
 There is a maximum of f(x) at x = a if f’(a) = 0 and f”(a) is negative.  
 There is a minimum of f (x) at x = a, if f’(a) = 0 and f” (a) is positive.  
To calculate maximum or minima, we find the point ‘a’ such that f’(a) = 0 and then decide 
if it is maximum or minima by judging the sign of f”(a).  
 
  Global maxima & minima  
 We first find local maxima & minima & then calculate the value of ‘f’ at boundary points of 
 interval given eg. [a, b], we find f(a) & f(b) & compare it with the values of local maxima &  
 minima. The absolute maxima & minima can be decided then.  
 
Taylor & Maclaurin series  
? Taylor series  
f(a + h) = f(a) + h f’(a) + 
2
h
2
 f”(a) + ………………..   
? Maclaurin 
f(x) = f(0) + x f’(0) + 
2
x
2
 f“(0)+……………..   
 
Partial Derivative  
If a derivative of a function of several independent variables be found with respect to any 
one of them, keeping the others as constant, it is said to be a partial derivative.  
 
Homogenous Function  
 
 
n 2 2 n n  1 n
n
0 1 2
a x a x y a x y ............. a y
? ?
? ? ? ?  is a homogenous function  
  of x & y,  of degree ‘n’  
  = 
? ? ? ? ? ?
2n
n
0 1 2
n y y y
x a a a .................... a
x x x
??
? ? ? ?
??
??
   
 
Euler’s Theorem  
 If u is a homogenous function of x & y of degree n, then  
   
uu
x y nu
xy
?? ??
??
??
??
??
   
Page 5


 
 
 
 
 
CALCULUS 
 
  Important Series Expansion  
a. ? ?
n
n
n
r  0
r
r
1 x C x
?
??
?
    
b. ? ?
1
2
1 x 1 x x ............
?
? ? ? ? ?   
c. ? ? ? ?
23
23
x
xx
a 1 x log a xloga xloga ................
2! 3!
? ? ? ? ?  
d. 
35
xx
sinx x   .................
3! 5!
? ? ?    
e. ??
24
xx
cosx 1 +  ......................
2! 4!
      
f. tan x = 
3
5
2
x
x + x + .........
3!
15
?    
g. log (1 + x) = 
23
xx
x +  + ............, x < 1
23
?   
 
  Important Limits  
 
a. 
lt
sinx
    1
x0 x
?
?
     
b.  
lt
tanx
     1
x0 x
?
?
       
c. ? ?
1
n
x
lt
  1 nx e
x0
??
?
 
d. 
lt
 cos x  1
x0
?
?
             
e. ? ?
1
x
lt
 1 x  e
x0
??
?
     
f. 
? ?
??
??
x
lt
1
 1 e
x
x
   
 
L – Hospitals Rule  
 If f (x) and g(x) are to function such that  
     ? ?
lt
 f x 0
xa
?
?
    and   ? ?
lt
 g x 0
xa
?
?
   
 
 
 
 
    
 Then  
? ?
? ?
? ?
? ?
lt lt f x f' x
    
x a x a g x g' x
?
??
    
 If f’(x) and g’(x) are also zero asxa ? , then we can take successive derivatives till this  
 condition is violated.  
 
 For continuity, ? ? ? ?
lim
f x =f a
xa ?
   
 For differentiability,  
? ? ? ?
0 0
f x h f x lim
h0 h
??
??
??
?
??
??
  exists and is equal to ? ?
0
f' x  
If a function is differentiable at some point then it is continuous at that point but converse 
may not be true.  
 
Mean Value Theorems  
? Rolle’s Theorem  
If there is a function f(x) such that f(x) is continuous in closed interval a = x = b and f’(x) 
is existing at every point in open interval a < x < b and f(a) = f(b).  
     Then, there exists a point ‘c’ such that f’(c) = 0 and a < c < b. 
 
? Lagrange’s Mean value Theorem 
If there is a function f(x) such that, f(x) is continuous in closed interval  a = x = b; and f(x) is 
differentiable in open interval (a, b) i.e., a < x < b,  
Then there exists a point ‘c’,  such that 
     ? ?
? ? ? ?
? ?
f b f a
f' c
ba
?
?
?
   
  
Differentiation  
  
 Properties:  (f + g)’ = f’ + g’ ;  (f – g)’ = f’ – g’ ; (f g)’ = f’ g + f g’  
  
 Important derivatives  
a. 
n
x
 ? n 
n  1
x
?
        
b. 
1
nx
x
?
    
c. 
? ?
?
aa
1
log x  (log e)
x
   
d. 
xx
e  e ?
    
 
 
 
 
 
e. 
xx
e
a  a log a ?
  
f. sin x  ? cos x  
g. cos x ? -sin x  
h. tan x ?  
2
sec x
  
i. sec x ?   sec x tan x  
j. cosec x ?  - cosec x cot x  
k. cot x ?  - cosec
2
 x  
l. sin h x ? cos h x  
m. cos h x ?  sin h x  
n. 
?
?
1
2
1
sin x  
1 - x
 
o. 
2
1
-1
cos x  
1x
?
?
?
 
   
p. 
?
?
?
2
1
1
tan x  
1x
 
 
q. 
2
1
-1
cosec x  
x x 1
?
?
?
  
r. 
?
?
?
2
1
1
sec x  
x x 1
   
s. 
1
2
-1
cot x  
1x
?
?
?
      
 
 
Increasing & Decreasing Functions  
? ? ? f' x 0 V ? ? ? x a, b ? , then f is increasing in [a, b] 
? ? ? f' x 0 V ? ? ? x a, b ? , then f is strictly increasing in [a, b] 
? ? ? f' x 0 V ? ? ? x a, b ? , then f is decreasing in [a, b] 
? ? ? f' x 0 V ? ? ? x a, b ? , then f is strictly decreasing in [a, b] 
 
 
 
 
 
 
 
 
 
Maxima & Minima  
  Local maxima or minima    
 There is a maximum of f(x) at x = a if f’(a) = 0 and f”(a) is negative.  
 There is a minimum of f (x) at x = a, if f’(a) = 0 and f” (a) is positive.  
To calculate maximum or minima, we find the point ‘a’ such that f’(a) = 0 and then decide 
if it is maximum or minima by judging the sign of f”(a).  
 
  Global maxima & minima  
 We first find local maxima & minima & then calculate the value of ‘f’ at boundary points of 
 interval given eg. [a, b], we find f(a) & f(b) & compare it with the values of local maxima &  
 minima. The absolute maxima & minima can be decided then.  
 
Taylor & Maclaurin series  
? Taylor series  
f(a + h) = f(a) + h f’(a) + 
2
h
2
 f”(a) + ………………..   
? Maclaurin 
f(x) = f(0) + x f’(0) + 
2
x
2
 f“(0)+……………..   
 
Partial Derivative  
If a derivative of a function of several independent variables be found with respect to any 
one of them, keeping the others as constant, it is said to be a partial derivative.  
 
Homogenous Function  
 
 
n 2 2 n n  1 n
n
0 1 2
a x a x y a x y ............. a y
? ?
? ? ? ?  is a homogenous function  
  of x & y,  of degree ‘n’  
  = 
? ? ? ? ? ?
2n
n
0 1 2
n y y y
x a a a .................... a
x x x
??
? ? ? ?
??
??
   
 
Euler’s Theorem  
 If u is a homogenous function of x & y of degree n, then  
   
uu
x y nu
xy
?? ??
??
??
??
??
   
 
 
 
  
 
Maxima & minima of multi-variable function  
  
2
2
xa
yb
f
let r
x
?
?
??
?
?
??
??
?
??
   ;       
2
xa
yb
f
s  
xy ?
?
??
?
?
??
??
??
??
       ;   
2
2
xa
yb
f
t  
y
?
?
??
?
?
??
??
?
??
      
? Maxima  
rt > 
2
s  ;    r < 0  
? Minima 
rt > 
2
s ;     r > 0  
? Saddle point  
rt < 
2
s   
 
Integration  
Indefinite integrals are just opposite of derivatives and hence important derivatives must 
always be remembered. 
 
 Properties of definite integral  
a. 
? ? ? ?
?
??
bb
aa
f x dx f t dt   
b. ? ? ? ?
ba
a b
f x dx f x dx ??
??
   
c. 
? ? ? ? ? ?
??
? ? ?
b cb
a a c
f x dx f x dx f x dx   
d. ? ? ? ?
b b
aa
f x dx f a b x dx ? ? ?
??
  
e.  ? ?
? ?
? ?
? ? ? ? ? ? ? ? ? ? ? ?
t
t
d
f x dx f t ' t f t ' t
dt
?
?
? ? ? ? ? ?
?
    
  
Vectors  
? Addition of vector  
ab ?  of two vector a = 
1 2 3
a ,a ,a ??
??
 and  b = 
1 2 3
b ,b ,b ??
??
  
   ?? ? ? ? ?
?? 1 1 2 2 3 3
 a + b = a b ,a b ,a b   
? Scalar Multiplication  
  ??
?? 1 2 3
ca = ca , ca , ca    
 
Read More
69 docs

Top Courses for Electrical Engineering (EE)

69 docs
Download as PDF
Explore Courses for Electrical Engineering (EE) exam

Top Courses for Electrical Engineering (EE)

Signup for Free!
Signup to see your scores go up within 7 days! Learn & Practice with 1000+ FREE Notes, Videos & Tests.
10M+ students study on EduRev
Related Searches

practice quizzes

,

Exam

,

Previous Year Questions with Solutions

,

Short Notes: Calculus | Short Notes for Electrical Engineering - Electrical Engineering (EE)

,

pdf

,

video lectures

,

Semester Notes

,

Objective type Questions

,

Summary

,

past year papers

,

Sample Paper

,

Short Notes: Calculus | Short Notes for Electrical Engineering - Electrical Engineering (EE)

,

MCQs

,

Free

,

Viva Questions

,

study material

,

Extra Questions

,

shortcuts and tricks

,

Short Notes: Calculus | Short Notes for Electrical Engineering - Electrical Engineering (EE)

,

mock tests for examination

,

ppt

,

Important questions

;