Download, print and study this document offline |
Page 2 General method of analysis ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?? ?? ?? ? ? ? ? ? ? o tt 0 x t x x t x e , t 0 If switching is done at t=t0 ? ? ? ? ? ? ? 00 initial va x t x t at lue of tt ? ? ? ? ?? ? ? final valu x x t f at t eo Algorithm 1. Choose any voltage & current in the circuit which has to be determined. 2. Assume circuit had reached steady state before switch was thrown at 0 tt ? . Draw the circuit at 0 tt ? ? with capacitor replaced by open circuit and inductor replaced by short circuit. Solve for ? ? ? C0 vt & ? ? ? L 0 i t . 3. Voltage across capacitor and inductor current cannot change instantaneously. ? ? ? ? ? ? ?? ?? C 0 C 0 C 0 V t V t V t ? ? ? ? ? ? ?? ?? L 0 L 0 L 0 i t i t i t 4. Draw the circuit for tt ? ? with switches in new position. Replace a capacitor with a voltage source ? ? ? ? ?? ? C 0 C 0 V t V t and inductor with a current source of value ? ? ? ? ?? ? L 0 L 0 i t i t . Solve for initial value of variable ? ? ? 0 xt . 5. Draw the circuit for t ?? , in a similar manner as step-2 and calculate ? ? x ? . Calculate time constant of circuit 6. t=Rth C or t=L/Rth 7. Substitute all value to calculate x(t). Example In the circuit shown below, ? ? 1 Vt for t > 0 will be given as Page 3 General method of analysis ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?? ?? ?? ? ? ? ? ? ? o tt 0 x t x x t x e , t 0 If switching is done at t=t0 ? ? ? ? ? ? ? 00 initial va x t x t at lue of tt ? ? ? ? ?? ? ? final valu x x t f at t eo Algorithm 1. Choose any voltage & current in the circuit which has to be determined. 2. Assume circuit had reached steady state before switch was thrown at 0 tt ? . Draw the circuit at 0 tt ? ? with capacitor replaced by open circuit and inductor replaced by short circuit. Solve for ? ? ? C0 vt & ? ? ? L 0 i t . 3. Voltage across capacitor and inductor current cannot change instantaneously. ? ? ? ? ? ? ?? ?? C 0 C 0 C 0 V t V t V t ? ? ? ? ? ? ?? ?? L 0 L 0 L 0 i t i t i t 4. Draw the circuit for tt ? ? with switches in new position. Replace a capacitor with a voltage source ? ? ? ? ?? ? C 0 C 0 V t V t and inductor with a current source of value ? ? ? ? ?? ? L 0 L 0 i t i t . Solve for initial value of variable ? ? ? 0 xt . 5. Draw the circuit for t ?? , in a similar manner as step-2 and calculate ? ? x ? . Calculate time constant of circuit 6. t=Rth C or t=L/Rth 7. Substitute all value to calculate x(t). Example In the circuit shown below, ? ? 1 Vt for t > 0 will be given as Solution Step 1 : For t < 0 ? ? ? ? 30u t 0 & 3u t 0 ?? ? ? ? ? 1 V 0 0V ?? For t ? ? 1 V 3mA 10k ? ? ? ? ? = -30 V Step 2 : ? ? At t0 ? ? ? ? 11 V 0 30 V 0 3mA 0 20k 10k ?? ? ? ? ? ? ? 1 3 V 0 1.5mA 20k ? ?? ? ? 1 V 0 10V ? ?? ? ? ? ? t 1 V t 30 10 30 e ? ? ? ? ? ? ? ? ? ? ? TH TH R 30k ; R C 0.3s ? ? ? ? ? ?? ?? ?? ? ? ? t 0.3 1 V t 30 20e u t V Series RLC circuit Without Source ? ? ? ? ?? ?? ? 0 0 1 V 0 i t dt V C ? ? ? 0 i o I By KVL ? ? ? ? ? ? ?? ? ? ? ? t di t 1 Ri t L i t dt 0 dt C Difference both sides ? ? ? ? ? ? 2 2 d i t di t R1 i t 0 L dt LC dt ? ? ? Page 4 General method of analysis ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?? ?? ?? ? ? ? ? ? ? o tt 0 x t x x t x e , t 0 If switching is done at t=t0 ? ? ? ? ? ? ? 00 initial va x t x t at lue of tt ? ? ? ? ?? ? ? final valu x x t f at t eo Algorithm 1. Choose any voltage & current in the circuit which has to be determined. 2. Assume circuit had reached steady state before switch was thrown at 0 tt ? . Draw the circuit at 0 tt ? ? with capacitor replaced by open circuit and inductor replaced by short circuit. Solve for ? ? ? C0 vt & ? ? ? L 0 i t . 3. Voltage across capacitor and inductor current cannot change instantaneously. ? ? ? ? ? ? ?? ?? C 0 C 0 C 0 V t V t V t ? ? ? ? ? ? ?? ?? L 0 L 0 L 0 i t i t i t 4. Draw the circuit for tt ? ? with switches in new position. Replace a capacitor with a voltage source ? ? ? ? ?? ? C 0 C 0 V t V t and inductor with a current source of value ? ? ? ? ?? ? L 0 L 0 i t i t . Solve for initial value of variable ? ? ? 0 xt . 5. Draw the circuit for t ?? , in a similar manner as step-2 and calculate ? ? x ? . Calculate time constant of circuit 6. t=Rth C or t=L/Rth 7. Substitute all value to calculate x(t). Example In the circuit shown below, ? ? 1 Vt for t > 0 will be given as Solution Step 1 : For t < 0 ? ? ? ? 30u t 0 & 3u t 0 ?? ? ? ? ? 1 V 0 0V ?? For t ? ? 1 V 3mA 10k ? ? ? ? ? = -30 V Step 2 : ? ? At t0 ? ? ? ? 11 V 0 30 V 0 3mA 0 20k 10k ?? ? ? ? ? ? ? 1 3 V 0 1.5mA 20k ? ?? ? ? 1 V 0 10V ? ?? ? ? ? ? t 1 V t 30 10 30 e ? ? ? ? ? ? ? ? ? ? ? TH TH R 30k ; R C 0.3s ? ? ? ? ? ?? ?? ?? ? ? ? t 0.3 1 V t 30 20e u t V Series RLC circuit Without Source ? ? ? ? ?? ?? ? 0 0 1 V 0 i t dt V C ? ? ? 0 i o I By KVL ? ? ? ? ? ? ?? ? ? ? ? t di t 1 Ri t L i t dt 0 dt C Difference both sides ? ? ? ? ? ? 2 2 d i t di t R1 i t 0 L dt LC dt ? ? ? ? ? ? st Substitute tA i e ? ? ? ? ? ? ? ?? 2 st 2 R1 A 0 S s 0 L LC R1 e S s L LC ?? ?? ?? ? ? ? ? 2 1 R R1 S 2L LC 2L , ?? ?? ?? ? ? ? ? 2 2 RR 1 S LC 2L 2L 22 1 2 0 0 1 R S ,S w ; ; w 2L LC ? ? ? ? ? ? ? ? ? 1. If 0 w ?? roots are real & unequal (over-damped) ? ? ?? 12 s t s t i t Ae Be 2. If 0 w ?? , roots are real & equal (critically damped) ? ? ? ? ?? ?? t i t A Bt e 3. If 0 w ?? , roots are complex conjugate (under-damped) ? ? ? ? ?? ?? t dd i t e Acosw t Bsinw t ? ? ? 22 d0 ww Calculate A & B using initial conditions. With a Source ? ? ? ? ? 12 S s t s t v t V Ae Be (Over-damped) ? ? ? ? ?? ?? S t v t V A Bt e (Critically damped) ? ? ? ? ? ? ?? ?? ? t S d d v t under damped V Acosw t Bsinw t e Parallel RCL Circuit Without Source ? ? ? ? 0 1 i 0 v t dt L ?? ? ? ? ? 0 v 0 V ? By KCL ? ? ? ? ? ? ?? ? ? ? ? ? ? t dv t 11 v t v d C 0 R L dt Page 5 General method of analysis ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?? ?? ?? ? ? ? ? ? ? o tt 0 x t x x t x e , t 0 If switching is done at t=t0 ? ? ? ? ? ? ? 00 initial va x t x t at lue of tt ? ? ? ? ?? ? ? final valu x x t f at t eo Algorithm 1. Choose any voltage & current in the circuit which has to be determined. 2. Assume circuit had reached steady state before switch was thrown at 0 tt ? . Draw the circuit at 0 tt ? ? with capacitor replaced by open circuit and inductor replaced by short circuit. Solve for ? ? ? C0 vt & ? ? ? L 0 i t . 3. Voltage across capacitor and inductor current cannot change instantaneously. ? ? ? ? ? ? ?? ?? C 0 C 0 C 0 V t V t V t ? ? ? ? ? ? ?? ?? L 0 L 0 L 0 i t i t i t 4. Draw the circuit for tt ? ? with switches in new position. Replace a capacitor with a voltage source ? ? ? ? ?? ? C 0 C 0 V t V t and inductor with a current source of value ? ? ? ? ?? ? L 0 L 0 i t i t . Solve for initial value of variable ? ? ? 0 xt . 5. Draw the circuit for t ?? , in a similar manner as step-2 and calculate ? ? x ? . Calculate time constant of circuit 6. t=Rth C or t=L/Rth 7. Substitute all value to calculate x(t). Example In the circuit shown below, ? ? 1 Vt for t > 0 will be given as Solution Step 1 : For t < 0 ? ? ? ? 30u t 0 & 3u t 0 ?? ? ? ? ? 1 V 0 0V ?? For t ? ? 1 V 3mA 10k ? ? ? ? ? = -30 V Step 2 : ? ? At t0 ? ? ? ? 11 V 0 30 V 0 3mA 0 20k 10k ?? ? ? ? ? ? ? 1 3 V 0 1.5mA 20k ? ?? ? ? 1 V 0 10V ? ?? ? ? ? ? t 1 V t 30 10 30 e ? ? ? ? ? ? ? ? ? ? ? TH TH R 30k ; R C 0.3s ? ? ? ? ? ?? ?? ?? ? ? ? t 0.3 1 V t 30 20e u t V Series RLC circuit Without Source ? ? ? ? ?? ?? ? 0 0 1 V 0 i t dt V C ? ? ? 0 i o I By KVL ? ? ? ? ? ? ?? ? ? ? ? t di t 1 Ri t L i t dt 0 dt C Difference both sides ? ? ? ? ? ? 2 2 d i t di t R1 i t 0 L dt LC dt ? ? ? ? ? ? st Substitute tA i e ? ? ? ? ? ? ? ?? 2 st 2 R1 A 0 S s 0 L LC R1 e S s L LC ?? ?? ?? ? ? ? ? 2 1 R R1 S 2L LC 2L , ?? ?? ?? ? ? ? ? 2 2 RR 1 S LC 2L 2L 22 1 2 0 0 1 R S ,S w ; ; w 2L LC ? ? ? ? ? ? ? ? ? 1. If 0 w ?? roots are real & unequal (over-damped) ? ? ?? 12 s t s t i t Ae Be 2. If 0 w ?? , roots are real & equal (critically damped) ? ? ? ? ?? ?? t i t A Bt e 3. If 0 w ?? , roots are complex conjugate (under-damped) ? ? ? ? ?? ?? t dd i t e Acosw t Bsinw t ? ? ? 22 d0 ww Calculate A & B using initial conditions. With a Source ? ? ? ? ? 12 S s t s t v t V Ae Be (Over-damped) ? ? ? ? ?? ?? S t v t V A Bt e (Critically damped) ? ? ? ? ? ? ?? ?? ? t S d d v t under damped V Acosw t Bsinw t e Parallel RCL Circuit Without Source ? ? ? ? 0 1 i 0 v t dt L ?? ? ? ? ? 0 v 0 V ? By KCL ? ? ? ? ? ? ?? ? ? ? ? ? ? t dv t 11 v t v d C 0 R L dt Characteristics equation 2 0 1 1 1 1 s s 0 ; , w RC LC 2RC LC ? ? ? ? ? ? ? ?? ? ? ? 22 1 2 0 S ,S w ? ? ? ? ?? ? 12 s t S t v t over damped Ae Be ? ? ? ? ? ? ?? ?? t v t A Bt critically damped e ? ? ? ? ? ? ?? ? ? ? dd t v t e Acosw t Bsinw t under damped With a step input ? ? ? ? ? ? ? ? 12 s s t S t Over it d I amped Ae Be ? ? ? ? ?? ? ? ? t s Critically i t I A B da d t mpe e ? ? ? ? ?? ? ? ?? s d d t i t I Acosw t Bsinw t Under d e amped Steps: 1. Write differential equation that describe the circuit. 2. From differential equation model, construct characteristics equation & find roots. 3. Roots of characteristics equation determine the type of response over-damped, critically damped & under-damped. 4. Obtain the constant using initial conditions.Read More
|
Explore Courses for Electrical Engineering (EE) exam
|