Class 8 Exam  >  Class 8 Notes  >  Class Notes - Practical Geometry, Class 8, Maths

Practical Geometry Class 8 Notes Maths

Download, print and study this document offline
Please wait while the PDF view is loading
 Page 1


Use Properties of Parallelograms
Section 8.2
February 15, 2011
Use Properties of Parallelograms
*Parallelograms: Quadrilaterals 
with opposite sides parallel.
Section 8.2
Pages 515­521
February 15, 2011
Page 2


Use Properties of Parallelograms
Section 8.2
February 15, 2011
Use Properties of Parallelograms
*Parallelograms: Quadrilaterals 
with opposite sides parallel.
Section 8.2
Pages 515­521
February 15, 2011
Use Properties of Parallelograms
Section 8.2
February 15, 2011
Opposite sides are congruent.
Page 3


Use Properties of Parallelograms
Section 8.2
February 15, 2011
Use Properties of Parallelograms
*Parallelograms: Quadrilaterals 
with opposite sides parallel.
Section 8.2
Pages 515­521
February 15, 2011
Use Properties of Parallelograms
Section 8.2
February 15, 2011
Opposite sides are congruent.
Use Properties of Parallelograms
Section 8.2
February 15, 2011
Opposite angles are congruent.
Page 4


Use Properties of Parallelograms
Section 8.2
February 15, 2011
Use Properties of Parallelograms
*Parallelograms: Quadrilaterals 
with opposite sides parallel.
Section 8.2
Pages 515­521
February 15, 2011
Use Properties of Parallelograms
Section 8.2
February 15, 2011
Opposite sides are congruent.
Use Properties of Parallelograms
Section 8.2
February 15, 2011
Opposite angles are congruent.
Use Properties of Parallelograms
Section 8.2
February 15, 2011
x = 72
y = 44
x = 7
y = 68
Page 5


Use Properties of Parallelograms
Section 8.2
February 15, 2011
Use Properties of Parallelograms
*Parallelograms: Quadrilaterals 
with opposite sides parallel.
Section 8.2
Pages 515­521
February 15, 2011
Use Properties of Parallelograms
Section 8.2
February 15, 2011
Opposite sides are congruent.
Use Properties of Parallelograms
Section 8.2
February 15, 2011
Opposite angles are congruent.
Use Properties of Parallelograms
Section 8.2
February 15, 2011
x = 72
y = 44
x = 7
y = 68
Use Properties of Parallelograms
Section 8.2
February 15, 2011
Consecutive interior 
angles are supplementary
Read More

FAQs on Practical Geometry Class 8 Notes Maths

1. What is practical geometry?
Ans. Practical geometry is a branch of mathematics that deals with the study of shapes, sizes, and properties of geometric figures in real-life situations. It focuses on applying geometric concepts and principles to solve practical problems related to measurement, construction, and design.
2. How is practical geometry useful in everyday life?
Ans. Practical geometry is useful in everyday life in various ways. It helps in measuring and designing objects, such as buildings, furniture, and clothing. It also aids in understanding maps, blueprints, and architectural plans. Additionally, practical geometry is applied in fields like engineering, architecture, fashion design, and carpentry, where accurate measurements and shapes are crucial for successful outcomes.
3. What are some common tools used in practical geometry?
Ans. Some common tools used in practical geometry include a ruler or scale for measuring lengths, a compass for drawing circles and arcs, a protractor for measuring angles, and a pair of dividers for transferring lengths and dividing lines. These tools help in accurately drawing and constructing geometric figures.
4. How do you construct a perpendicular bisector using practical geometry?
Ans. To construct a perpendicular bisector using practical geometry, follow these steps: 1. Draw a line segment AB. 2. Place the compass at point A and draw an arc that intersects the line segment. 3. Without changing the compass width, place the compass at point B and draw another arc that intersects the first arc. 4. Label the points of intersection as C and D. 5. Draw a straight line passing through points C and D. 6. The line CD is the perpendicular bisector of the line segment AB.
5. How can practical geometry be applied to calculate the area of a triangle?
Ans. Practical geometry can be applied to calculate the area of a triangle using the formula A = 1/2 * base * height, where A represents the area, base is the length of the triangle's base, and height is the perpendicular distance from the base to the opposite vertex. By measuring the base and height accurately, the formula can be used to find the area of various triangles, helping in solving real-life problems involving triangles.
Download as PDF

Top Courses for Class 8

Related Searches

Practical Geometry Class 8 Notes Maths

,

practice quizzes

,

Semester Notes

,

Summary

,

Exam

,

pdf

,

past year papers

,

Sample Paper

,

Extra Questions

,

Practical Geometry Class 8 Notes Maths

,

shortcuts and tricks

,

MCQs

,

Free

,

Practical Geometry Class 8 Notes Maths

,

ppt

,

Viva Questions

,

Previous Year Questions with Solutions

,

Important questions

,

mock tests for examination

,

video lectures

,

study material

,

Objective type Questions

;