Download, print and study this document offline |
Page 1 M e as u r e of C e n t r al T e n d e n c y: Usually when two or more different data sets are to be compared it is necessary to condense the data, but for comparison the condensation of data set into a frequency distribution and visual presentation are not enough. It is then necessary to summarize the data set in a single value. Such a value usually somewhere in the center and represent the entire data set and hence it is called measure of central tendency or averages. Since a measure of central tendency (i.e. an average) indicates the location or the general position of the distribution on the X-axis therefore it is also known as a measure of location or position. T y p e s o f M e a s u r e o f C e n t r a l T e n d e n c y 1. Arithmetic Mean 2. Geometric Mean 3. Harmonic Mean 4. Mode 5. Median A r i t h m e t i c M e a n or S i m p l y M e a n : “ A v a l u e o b t a i n e d b y d i v i d i n g t h e s u m o f a l l t h e o b s e r v a t i o n s b y t h e n u m b e r o f o b s e r v a t i o n i s c a l l e d a r i t h m e t i c M e a n ” Sum of A l l obs e r v at i on M e an N um be r of obs e r v at i on ? N u m e r i c al E xam p l e : Page 2 M e as u r e of C e n t r al T e n d e n c y: Usually when two or more different data sets are to be compared it is necessary to condense the data, but for comparison the condensation of data set into a frequency distribution and visual presentation are not enough. It is then necessary to summarize the data set in a single value. Such a value usually somewhere in the center and represent the entire data set and hence it is called measure of central tendency or averages. Since a measure of central tendency (i.e. an average) indicates the location or the general position of the distribution on the X-axis therefore it is also known as a measure of location or position. T y p e s o f M e a s u r e o f C e n t r a l T e n d e n c y 1. Arithmetic Mean 2. Geometric Mean 3. Harmonic Mean 4. Mode 5. Median A r i t h m e t i c M e a n or S i m p l y M e a n : “ A v a l u e o b t a i n e d b y d i v i d i n g t h e s u m o f a l l t h e o b s e r v a t i o n s b y t h e n u m b e r o f o b s e r v a t i o n i s c a l l e d a r i t h m e t i c M e a n ” Sum of A l l obs e r v at i on M e an N um be r of obs e r v at i on ? N u m e r i c al E xam p l e : C al c u l at e t h e ar i t h m e t i c m e an f or t h e f ol l ow i n g t h e m ar k s ob t ai n e d b y 9 s t u d e n t s ar e gi ve n b e l ow : Using formula of arithmetic mean for ungrouped data: 1 n i i x x n ? ? ? 9 n ? 360 9 x ? 40 m ar k s ? ? N u m e r i c al E xam p l e : ? C al c u l at e t h e ar i t h m e t i c m e an f or t h e f ol l ow i n g d at a gi ve n b e l ow : ? Using formula of d i r e c t m e t h od of ar i t h m e t i c m e an for gr ou p e d d at a: 1 1 n i i i n i i f x x f ? ? ? ? ? , 1 n i i n f ? ? ? The weight recorded to the nearest grams of 60 apples picked out at random from a consignment are given below: i x 4 5 3 2 3 7 4 6 3 9 3 6 4 1 4 8 3 6 1 360 n i i x ? ? ? 106 107 76 82 109 107 115 93 187 95 123 125 111 92 86 70 126 68 130 129 139 119 115 128 100 186 84 99 113 204 111 141 136 123 90 115 98 110 78 185 162 178 140 152 173 146 158 194 148 90 107 181 131 75 184 104 110 80 118 82 Page 3 M e as u r e of C e n t r al T e n d e n c y: Usually when two or more different data sets are to be compared it is necessary to condense the data, but for comparison the condensation of data set into a frequency distribution and visual presentation are not enough. It is then necessary to summarize the data set in a single value. Such a value usually somewhere in the center and represent the entire data set and hence it is called measure of central tendency or averages. Since a measure of central tendency (i.e. an average) indicates the location or the general position of the distribution on the X-axis therefore it is also known as a measure of location or position. T y p e s o f M e a s u r e o f C e n t r a l T e n d e n c y 1. Arithmetic Mean 2. Geometric Mean 3. Harmonic Mean 4. Mode 5. Median A r i t h m e t i c M e a n or S i m p l y M e a n : “ A v a l u e o b t a i n e d b y d i v i d i n g t h e s u m o f a l l t h e o b s e r v a t i o n s b y t h e n u m b e r o f o b s e r v a t i o n i s c a l l e d a r i t h m e t i c M e a n ” Sum of A l l obs e r v at i on M e an N um be r of obs e r v at i on ? N u m e r i c al E xam p l e : C al c u l at e t h e ar i t h m e t i c m e an f or t h e f ol l ow i n g t h e m ar k s ob t ai n e d b y 9 s t u d e n t s ar e gi ve n b e l ow : Using formula of arithmetic mean for ungrouped data: 1 n i i x x n ? ? ? 9 n ? 360 9 x ? 40 m ar k s ? ? N u m e r i c al E xam p l e : ? C al c u l at e t h e ar i t h m e t i c m e an f or t h e f ol l ow i n g d at a gi ve n b e l ow : ? Using formula of d i r e c t m e t h od of ar i t h m e t i c m e an for gr ou p e d d at a: 1 1 n i i i n i i f x x f ? ? ? ? ? , 1 n i i n f ? ? ? The weight recorded to the nearest grams of 60 apples picked out at random from a consignment are given below: i x 4 5 3 2 3 7 4 6 3 9 3 6 4 1 4 8 3 6 1 360 n i i x ? ? ? 106 107 76 82 109 107 115 93 187 95 123 125 111 92 86 70 126 68 130 129 139 119 115 128 100 186 84 99 113 204 111 141 136 123 90 115 98 110 78 185 162 178 140 152 173 146 158 194 148 90 107 181 131 75 184 104 110 80 118 82 S ol u t i on : Weight (grams) Midpoints ( i x ) Frequency ( i f ) i i f x 65----84 85----104 105----124 125----144 145----164 165----184 185----204 (65 84) 2 74.5 ? ? 94.5 114.5 134.5 154.5 174.5 194.5 09 10 17 10 05 04 05 9 ?74.5=670.5 945.0 1946.5 1345.0 772.5 698.0 972.5 1 60 n i i f ? ? ? 1 n i i i f x ? ? ? 7350.0 1 1 n i i i n i i f x x f ? ? ? ? ? 7350.0 60 ? 122.5 ? grams ? Using formula of s h or t c u t m e t h od of ar i t h m e t i c m e an for gr ou p e d d at a: 1 1 n i i i n i i f D x A f ? ? ? ? ? ? , 1 n i i n f ? ? ? Where i i D X A ? ? and A is the provisional or assumed mean Weight (grams) Frequency 65----84 85----104 105----124 125----144 145----164 165----184 185----204 09 10 17 10 05 04 05 Page 4 M e as u r e of C e n t r al T e n d e n c y: Usually when two or more different data sets are to be compared it is necessary to condense the data, but for comparison the condensation of data set into a frequency distribution and visual presentation are not enough. It is then necessary to summarize the data set in a single value. Such a value usually somewhere in the center and represent the entire data set and hence it is called measure of central tendency or averages. Since a measure of central tendency (i.e. an average) indicates the location or the general position of the distribution on the X-axis therefore it is also known as a measure of location or position. T y p e s o f M e a s u r e o f C e n t r a l T e n d e n c y 1. Arithmetic Mean 2. Geometric Mean 3. Harmonic Mean 4. Mode 5. Median A r i t h m e t i c M e a n or S i m p l y M e a n : “ A v a l u e o b t a i n e d b y d i v i d i n g t h e s u m o f a l l t h e o b s e r v a t i o n s b y t h e n u m b e r o f o b s e r v a t i o n i s c a l l e d a r i t h m e t i c M e a n ” Sum of A l l obs e r v at i on M e an N um be r of obs e r v at i on ? N u m e r i c al E xam p l e : C al c u l at e t h e ar i t h m e t i c m e an f or t h e f ol l ow i n g t h e m ar k s ob t ai n e d b y 9 s t u d e n t s ar e gi ve n b e l ow : Using formula of arithmetic mean for ungrouped data: 1 n i i x x n ? ? ? 9 n ? 360 9 x ? 40 m ar k s ? ? N u m e r i c al E xam p l e : ? C al c u l at e t h e ar i t h m e t i c m e an f or t h e f ol l ow i n g d at a gi ve n b e l ow : ? Using formula of d i r e c t m e t h od of ar i t h m e t i c m e an for gr ou p e d d at a: 1 1 n i i i n i i f x x f ? ? ? ? ? , 1 n i i n f ? ? ? The weight recorded to the nearest grams of 60 apples picked out at random from a consignment are given below: i x 4 5 3 2 3 7 4 6 3 9 3 6 4 1 4 8 3 6 1 360 n i i x ? ? ? 106 107 76 82 109 107 115 93 187 95 123 125 111 92 86 70 126 68 130 129 139 119 115 128 100 186 84 99 113 204 111 141 136 123 90 115 98 110 78 185 162 178 140 152 173 146 158 194 148 90 107 181 131 75 184 104 110 80 118 82 S ol u t i on : Weight (grams) Midpoints ( i x ) Frequency ( i f ) i i f x 65----84 85----104 105----124 125----144 145----164 165----184 185----204 (65 84) 2 74.5 ? ? 94.5 114.5 134.5 154.5 174.5 194.5 09 10 17 10 05 04 05 9 ?74.5=670.5 945.0 1946.5 1345.0 772.5 698.0 972.5 1 60 n i i f ? ? ? 1 n i i i f x ? ? ? 7350.0 1 1 n i i i n i i f x x f ? ? ? ? ? 7350.0 60 ? 122.5 ? grams ? Using formula of s h or t c u t m e t h od of ar i t h m e t i c m e an for gr ou p e d d at a: 1 1 n i i i n i i f D x A f ? ? ? ? ? ? , 1 n i i n f ? ? ? Where i i D X A ? ? and A is the provisional or assumed mean Weight (grams) Frequency 65----84 85----104 105----124 125----144 145----164 165----184 185----204 09 10 17 10 05 04 05 Weight (grams) Midpoints ( i x ) Frequency ( i f ) i i D X A ? ? 114.5 A ? i f i D 65----84 85----104 105----124 125----144 145----164 165----184 185----204 (65 84) 2 74.5 ? ? 94.5 114.5 134.5 154.5 174.5 194.5 09 10 17 10 05 04 05 -40 -20 0 20 40 60 80 -360 -200 0 200 200 240 400 1 60 n i i f ? ? ? 1 n i i i f D ? ? =480 1 1 n i i i n i i f D x A f ? ? ? ? ? ? 480 114.5 60 ? ? 122.5 ? grams ? Using formula of s t e p d e vi at i on m e t h od of ar i t h m e t i c m e an for gr ou p e d d at a: 1 1 n i i i n i i f u x A h f ? ? ? ? ? ? ? , i i x A u h ? ? , where h is the width of the class interval: Weight (grams) Midpoints ( i x ) Frequency ( i f ) i i X A u h ? ? 114.5 A ? , h=20 i f i u 65----84 85----104 105----124 125----144 145----164 165----184 185----204 (65 84) 2 74.5 ? ? 94.5 114.5 134.5 154.5 174.5 194.5 09 10 17 10 05 04 05 -2 -1 0 1 2 3 4 -18 -10 0 10 10 12 20 1 60 n i i f ? ? ? 1 n i i i f u ? ? =24 1 1 n i i i n i i f u x A h f ? ? ? ? ? ? ? 24 114.5 20 60 ? ? ? 114.5 08 ? ? 122.5 ? grams (Answer). Page 5 M e as u r e of C e n t r al T e n d e n c y: Usually when two or more different data sets are to be compared it is necessary to condense the data, but for comparison the condensation of data set into a frequency distribution and visual presentation are not enough. It is then necessary to summarize the data set in a single value. Such a value usually somewhere in the center and represent the entire data set and hence it is called measure of central tendency or averages. Since a measure of central tendency (i.e. an average) indicates the location or the general position of the distribution on the X-axis therefore it is also known as a measure of location or position. T y p e s o f M e a s u r e o f C e n t r a l T e n d e n c y 1. Arithmetic Mean 2. Geometric Mean 3. Harmonic Mean 4. Mode 5. Median A r i t h m e t i c M e a n or S i m p l y M e a n : “ A v a l u e o b t a i n e d b y d i v i d i n g t h e s u m o f a l l t h e o b s e r v a t i o n s b y t h e n u m b e r o f o b s e r v a t i o n i s c a l l e d a r i t h m e t i c M e a n ” Sum of A l l obs e r v at i on M e an N um be r of obs e r v at i on ? N u m e r i c al E xam p l e : C al c u l at e t h e ar i t h m e t i c m e an f or t h e f ol l ow i n g t h e m ar k s ob t ai n e d b y 9 s t u d e n t s ar e gi ve n b e l ow : Using formula of arithmetic mean for ungrouped data: 1 n i i x x n ? ? ? 9 n ? 360 9 x ? 40 m ar k s ? ? N u m e r i c al E xam p l e : ? C al c u l at e t h e ar i t h m e t i c m e an f or t h e f ol l ow i n g d at a gi ve n b e l ow : ? Using formula of d i r e c t m e t h od of ar i t h m e t i c m e an for gr ou p e d d at a: 1 1 n i i i n i i f x x f ? ? ? ? ? , 1 n i i n f ? ? ? The weight recorded to the nearest grams of 60 apples picked out at random from a consignment are given below: i x 4 5 3 2 3 7 4 6 3 9 3 6 4 1 4 8 3 6 1 360 n i i x ? ? ? 106 107 76 82 109 107 115 93 187 95 123 125 111 92 86 70 126 68 130 129 139 119 115 128 100 186 84 99 113 204 111 141 136 123 90 115 98 110 78 185 162 178 140 152 173 146 158 194 148 90 107 181 131 75 184 104 110 80 118 82 S ol u t i on : Weight (grams) Midpoints ( i x ) Frequency ( i f ) i i f x 65----84 85----104 105----124 125----144 145----164 165----184 185----204 (65 84) 2 74.5 ? ? 94.5 114.5 134.5 154.5 174.5 194.5 09 10 17 10 05 04 05 9 ?74.5=670.5 945.0 1946.5 1345.0 772.5 698.0 972.5 1 60 n i i f ? ? ? 1 n i i i f x ? ? ? 7350.0 1 1 n i i i n i i f x x f ? ? ? ? ? 7350.0 60 ? 122.5 ? grams ? Using formula of s h or t c u t m e t h od of ar i t h m e t i c m e an for gr ou p e d d at a: 1 1 n i i i n i i f D x A f ? ? ? ? ? ? , 1 n i i n f ? ? ? Where i i D X A ? ? and A is the provisional or assumed mean Weight (grams) Frequency 65----84 85----104 105----124 125----144 145----164 165----184 185----204 09 10 17 10 05 04 05 Weight (grams) Midpoints ( i x ) Frequency ( i f ) i i D X A ? ? 114.5 A ? i f i D 65----84 85----104 105----124 125----144 145----164 165----184 185----204 (65 84) 2 74.5 ? ? 94.5 114.5 134.5 154.5 174.5 194.5 09 10 17 10 05 04 05 -40 -20 0 20 40 60 80 -360 -200 0 200 200 240 400 1 60 n i i f ? ? ? 1 n i i i f D ? ? =480 1 1 n i i i n i i f D x A f ? ? ? ? ? ? 480 114.5 60 ? ? 122.5 ? grams ? Using formula of s t e p d e vi at i on m e t h od of ar i t h m e t i c m e an for gr ou p e d d at a: 1 1 n i i i n i i f u x A h f ? ? ? ? ? ? ? , i i x A u h ? ? , where h is the width of the class interval: Weight (grams) Midpoints ( i x ) Frequency ( i f ) i i X A u h ? ? 114.5 A ? , h=20 i f i u 65----84 85----104 105----124 125----144 145----164 165----184 185----204 (65 84) 2 74.5 ? ? 94.5 114.5 134.5 154.5 174.5 194.5 09 10 17 10 05 04 05 -2 -1 0 1 2 3 4 -18 -10 0 10 10 12 20 1 60 n i i f ? ? ? 1 n i i i f u ? ? =24 1 1 n i i i n i i f u x A h f ? ? ? ? ? ? ? 24 114.5 20 60 ? ? ? 114.5 08 ? ? 122.5 ? grams (Answer). C h a p t e r 0 3 M e a s u r e s o f C e n t r a l T e n d e n c yRead More
181 videos|346 docs
|
|
Explore Courses for UPSC exam
|