JEE Exam  >  JEE Notes  >  Mathematics (Maths) for JEE Main & Advanced  >  Applications of Derivatives: JEE Mains Previous Year Questions (2021-2024)

Applications of Derivatives: JEE Mains Previous Year Questions (2021-2024) | Mathematics (Maths) for JEE Main & Advanced PDF Download

Download, print and study this document offline
Please wait while the PDF view is loading
 Page 1


JEE Mains Previous Year Questions 
(2021-2024): Application of 
Derivatives 
2024 
Q1 - 2024 (01 Feb Shift 1) 
If 5f( x)+ 4f (
1
x
)= x
2
- 2, ?x ? 0 and y = 9x
2
f( x) , then y is strictly increasing in : 
(1) ( 0,
1
v5
)? (
1
v5
, 8) 
(2) ( -
1
v5
, 0)? (
1
v5
, 8) 
(3) ( -
1
v5
, 0)? ( 0,
1
v5
) 
(4) ( -8,
1
v5
)? ( 0,
1
v5
) 
Q2 - 2024 (27 Jan Shift 2) 
Let ?? ( ?? )= 3?? (
?? 3
)+ ?? ( 3 - ?? ) and ?? ''
( ?? )> 0 for all x ? ( 0,3) . If g is decreasing in ( 0, ?? ) 
and increasing in ( ?? , 3) , then 8?? is 
(1) 24 
(2) 0 
(3) 18 
(4) 20 
Q3 - 2024 (29 Jan Shift 2) 
The function ?? ( ?? )= 2?? + 3( ?? )
2
3
, ?? ? R, has 
(1) exactly one point of local minima and no point of local maxima 
(2) exactly one point of local maxima and no point of local minima 
(3) exactly one point of local maxima and exactly one point of local minima 
Page 2


JEE Mains Previous Year Questions 
(2021-2024): Application of 
Derivatives 
2024 
Q1 - 2024 (01 Feb Shift 1) 
If 5f( x)+ 4f (
1
x
)= x
2
- 2, ?x ? 0 and y = 9x
2
f( x) , then y is strictly increasing in : 
(1) ( 0,
1
v5
)? (
1
v5
, 8) 
(2) ( -
1
v5
, 0)? (
1
v5
, 8) 
(3) ( -
1
v5
, 0)? ( 0,
1
v5
) 
(4) ( -8,
1
v5
)? ( 0,
1
v5
) 
Q2 - 2024 (27 Jan Shift 2) 
Let ?? ( ?? )= 3?? (
?? 3
)+ ?? ( 3 - ?? ) and ?? ''
( ?? )> 0 for all x ? ( 0,3) . If g is decreasing in ( 0, ?? ) 
and increasing in ( ?? , 3) , then 8?? is 
(1) 24 
(2) 0 
(3) 18 
(4) 20 
Q3 - 2024 (29 Jan Shift 2) 
The function ?? ( ?? )= 2?? + 3( ?? )
2
3
, ?? ? R, has 
(1) exactly one point of local minima and no point of local maxima 
(2) exactly one point of local maxima and no point of local minima 
(3) exactly one point of local maxima and exactly one point of local minima 
(4) exactly two points of local maxima and exactly one point of local minima 
Q4 - 2024 (29 Jan Shift 2) 
The function ?? ( ?? )=
?? ?? 2
-6?? -16
, ?? ? R - {-2,8} 
(1) decreases in ( -2,8) and increases in 
( -8, -2)? ( 8, 8) 
(2) decreases in ( -8, -2)? ( -2,8)? ( 8, 8) 
(3) decreases in ( -8, -2) and increases in ( 8, 8) 
(4) increases in ( -8, -2)? ( -2,8)? ( 8, 8) 
Q5 - 2024 (30 Jan Shift 1) 
Let g: R ? R be a non constant twice differentiable such that g
'
(
1
2
)= g
'
(
3
2
) . If a real 
valued function f is defined as ?? ( ?? )=
1
2
[?? ( ?? )+ ?? ( 2 - ?? ) ], then 
(1) ?? ''
( ?? )= 0 for atleast two ?? in ( 0,2) 
(2) ?? ''
( ?? )= 0 for exactly one ?? in ( 0,1) 
(3) ?? ''
( ?? )= 0 for no ?? in ( 0,1) 
(4) f
'
(
3
2
)+ f
'
(
1
2
)= 1 
Q6 - 2024 (30 Jan Shift 2) 
Let ?? ( ?? )= ( ?? + 3)
2
( ?? - 2)
3
, ?? ? [-4,4]. If ?? and ?? are the maximum and minimum 
values of ?? , respectively in [-4,4], then the value of ?? - ?? is : 
(1) 600 
(2) 392 
(3) 608 
(4) 108 
Answer Key 
Q1 (2) 
Q2 (3) 
Page 3


JEE Mains Previous Year Questions 
(2021-2024): Application of 
Derivatives 
2024 
Q1 - 2024 (01 Feb Shift 1) 
If 5f( x)+ 4f (
1
x
)= x
2
- 2, ?x ? 0 and y = 9x
2
f( x) , then y is strictly increasing in : 
(1) ( 0,
1
v5
)? (
1
v5
, 8) 
(2) ( -
1
v5
, 0)? (
1
v5
, 8) 
(3) ( -
1
v5
, 0)? ( 0,
1
v5
) 
(4) ( -8,
1
v5
)? ( 0,
1
v5
) 
Q2 - 2024 (27 Jan Shift 2) 
Let ?? ( ?? )= 3?? (
?? 3
)+ ?? ( 3 - ?? ) and ?? ''
( ?? )> 0 for all x ? ( 0,3) . If g is decreasing in ( 0, ?? ) 
and increasing in ( ?? , 3) , then 8?? is 
(1) 24 
(2) 0 
(3) 18 
(4) 20 
Q3 - 2024 (29 Jan Shift 2) 
The function ?? ( ?? )= 2?? + 3( ?? )
2
3
, ?? ? R, has 
(1) exactly one point of local minima and no point of local maxima 
(2) exactly one point of local maxima and no point of local minima 
(3) exactly one point of local maxima and exactly one point of local minima 
(4) exactly two points of local maxima and exactly one point of local minima 
Q4 - 2024 (29 Jan Shift 2) 
The function ?? ( ?? )=
?? ?? 2
-6?? -16
, ?? ? R - {-2,8} 
(1) decreases in ( -2,8) and increases in 
( -8, -2)? ( 8, 8) 
(2) decreases in ( -8, -2)? ( -2,8)? ( 8, 8) 
(3) decreases in ( -8, -2) and increases in ( 8, 8) 
(4) increases in ( -8, -2)? ( -2,8)? ( 8, 8) 
Q5 - 2024 (30 Jan Shift 1) 
Let g: R ? R be a non constant twice differentiable such that g
'
(
1
2
)= g
'
(
3
2
) . If a real 
valued function f is defined as ?? ( ?? )=
1
2
[?? ( ?? )+ ?? ( 2 - ?? ) ], then 
(1) ?? ''
( ?? )= 0 for atleast two ?? in ( 0,2) 
(2) ?? ''
( ?? )= 0 for exactly one ?? in ( 0,1) 
(3) ?? ''
( ?? )= 0 for no ?? in ( 0,1) 
(4) f
'
(
3
2
)+ f
'
(
1
2
)= 1 
Q6 - 2024 (30 Jan Shift 2) 
Let ?? ( ?? )= ( ?? + 3)
2
( ?? - 2)
3
, ?? ? [-4,4]. If ?? and ?? are the maximum and minimum 
values of ?? , respectively in [-4,4], then the value of ?? - ?? is : 
(1) 600 
(2) 392 
(3) 608 
(4) 108 
Answer Key 
Q1 (2) 
Q2 (3) 
Q3 (3)  
Q4 (2) 
Q5 (1) 
Q6 (3) 
 
Solutions 
Q1 
5f( x)+ 4f (
1
?? )= x
2
- 2, ??? ? 0 
Substitute ?? ?
1
?? 
5?? (
1
?? )+ 4?? ( ?? )=
1
?? 2
- 2 
On solving (1) and (2) 
?? ( ?? )=
5?? 4
- 2?? 2
- 4
9?? 2
 
?? = 9?? 2
?? ( ?? ) 
?? = 5?? 4
- 2?? 2
- 4. 
????
????
= 20?? 3
- 4?? 
for strictly increasing 
dy
dx
> 0 
4x( 5x
2
- 1)> 0 
x ? ( -
1
v5
, 0)? (
1
v5
, 8) 
Q2 
?? ( ?? )= 3?? (
?? 3
)+ ?? ( 3 - ?? ) and ?? ''
( ?? )> 0??? ? ( 0,3)? f
'
( x) is increasing function 
Page 4


JEE Mains Previous Year Questions 
(2021-2024): Application of 
Derivatives 
2024 
Q1 - 2024 (01 Feb Shift 1) 
If 5f( x)+ 4f (
1
x
)= x
2
- 2, ?x ? 0 and y = 9x
2
f( x) , then y is strictly increasing in : 
(1) ( 0,
1
v5
)? (
1
v5
, 8) 
(2) ( -
1
v5
, 0)? (
1
v5
, 8) 
(3) ( -
1
v5
, 0)? ( 0,
1
v5
) 
(4) ( -8,
1
v5
)? ( 0,
1
v5
) 
Q2 - 2024 (27 Jan Shift 2) 
Let ?? ( ?? )= 3?? (
?? 3
)+ ?? ( 3 - ?? ) and ?? ''
( ?? )> 0 for all x ? ( 0,3) . If g is decreasing in ( 0, ?? ) 
and increasing in ( ?? , 3) , then 8?? is 
(1) 24 
(2) 0 
(3) 18 
(4) 20 
Q3 - 2024 (29 Jan Shift 2) 
The function ?? ( ?? )= 2?? + 3( ?? )
2
3
, ?? ? R, has 
(1) exactly one point of local minima and no point of local maxima 
(2) exactly one point of local maxima and no point of local minima 
(3) exactly one point of local maxima and exactly one point of local minima 
(4) exactly two points of local maxima and exactly one point of local minima 
Q4 - 2024 (29 Jan Shift 2) 
The function ?? ( ?? )=
?? ?? 2
-6?? -16
, ?? ? R - {-2,8} 
(1) decreases in ( -2,8) and increases in 
( -8, -2)? ( 8, 8) 
(2) decreases in ( -8, -2)? ( -2,8)? ( 8, 8) 
(3) decreases in ( -8, -2) and increases in ( 8, 8) 
(4) increases in ( -8, -2)? ( -2,8)? ( 8, 8) 
Q5 - 2024 (30 Jan Shift 1) 
Let g: R ? R be a non constant twice differentiable such that g
'
(
1
2
)= g
'
(
3
2
) . If a real 
valued function f is defined as ?? ( ?? )=
1
2
[?? ( ?? )+ ?? ( 2 - ?? ) ], then 
(1) ?? ''
( ?? )= 0 for atleast two ?? in ( 0,2) 
(2) ?? ''
( ?? )= 0 for exactly one ?? in ( 0,1) 
(3) ?? ''
( ?? )= 0 for no ?? in ( 0,1) 
(4) f
'
(
3
2
)+ f
'
(
1
2
)= 1 
Q6 - 2024 (30 Jan Shift 2) 
Let ?? ( ?? )= ( ?? + 3)
2
( ?? - 2)
3
, ?? ? [-4,4]. If ?? and ?? are the maximum and minimum 
values of ?? , respectively in [-4,4], then the value of ?? - ?? is : 
(1) 600 
(2) 392 
(3) 608 
(4) 108 
Answer Key 
Q1 (2) 
Q2 (3) 
Q3 (3)  
Q4 (2) 
Q5 (1) 
Q6 (3) 
 
Solutions 
Q1 
5f( x)+ 4f (
1
?? )= x
2
- 2, ??? ? 0 
Substitute ?? ?
1
?? 
5?? (
1
?? )+ 4?? ( ?? )=
1
?? 2
- 2 
On solving (1) and (2) 
?? ( ?? )=
5?? 4
- 2?? 2
- 4
9?? 2
 
?? = 9?? 2
?? ( ?? ) 
?? = 5?? 4
- 2?? 2
- 4. 
????
????
= 20?? 3
- 4?? 
for strictly increasing 
dy
dx
> 0 
4x( 5x
2
- 1)> 0 
x ? ( -
1
v5
, 0)? (
1
v5
, 8) 
Q2 
?? ( ?? )= 3?? (
?? 3
)+ ?? ( 3 - ?? ) and ?? ''
( ?? )> 0??? ? ( 0,3)? f
'
( x) is increasing function 
?? '
( ?? )= 3 ×
1
3
· ?? '
(
?? 3
)- ?? '
( 3 - ?? ) 
= ?? '
(
?? 3
)- ?? '
( 3 - ?? ) 
If g is decreasing in ( 0, ?? ) 
g
'
( x)< 0 
f
'
(
x
3
)+ f
'
( 3 - x)< 0 
f
'
(
x
3
)< f
'
( 3 - x) 
?
x
3
< 3 - x 
? x <
9
4
 
Therefore ?? =
9
4
 
Then 8?? = 8 ×
9
4
= 18 
Q3 
?? ( ?? )= 2?? + 3( ?? )
2
3
?? '
( ?? )= 2 + 2?? -1
3
 = 2 (1 +
1
?? 1
3
)
 = 2 (
?? 1
3
+ 1
?? 1
3
)
 
 
So, maxima ( M) at x = -1&minima ( m) at x = 0 
Q4 
?? ( ?? )=
?? ?? 2
- 6?? - 16
 
Now, 
Page 5


JEE Mains Previous Year Questions 
(2021-2024): Application of 
Derivatives 
2024 
Q1 - 2024 (01 Feb Shift 1) 
If 5f( x)+ 4f (
1
x
)= x
2
- 2, ?x ? 0 and y = 9x
2
f( x) , then y is strictly increasing in : 
(1) ( 0,
1
v5
)? (
1
v5
, 8) 
(2) ( -
1
v5
, 0)? (
1
v5
, 8) 
(3) ( -
1
v5
, 0)? ( 0,
1
v5
) 
(4) ( -8,
1
v5
)? ( 0,
1
v5
) 
Q2 - 2024 (27 Jan Shift 2) 
Let ?? ( ?? )= 3?? (
?? 3
)+ ?? ( 3 - ?? ) and ?? ''
( ?? )> 0 for all x ? ( 0,3) . If g is decreasing in ( 0, ?? ) 
and increasing in ( ?? , 3) , then 8?? is 
(1) 24 
(2) 0 
(3) 18 
(4) 20 
Q3 - 2024 (29 Jan Shift 2) 
The function ?? ( ?? )= 2?? + 3( ?? )
2
3
, ?? ? R, has 
(1) exactly one point of local minima and no point of local maxima 
(2) exactly one point of local maxima and no point of local minima 
(3) exactly one point of local maxima and exactly one point of local minima 
(4) exactly two points of local maxima and exactly one point of local minima 
Q4 - 2024 (29 Jan Shift 2) 
The function ?? ( ?? )=
?? ?? 2
-6?? -16
, ?? ? R - {-2,8} 
(1) decreases in ( -2,8) and increases in 
( -8, -2)? ( 8, 8) 
(2) decreases in ( -8, -2)? ( -2,8)? ( 8, 8) 
(3) decreases in ( -8, -2) and increases in ( 8, 8) 
(4) increases in ( -8, -2)? ( -2,8)? ( 8, 8) 
Q5 - 2024 (30 Jan Shift 1) 
Let g: R ? R be a non constant twice differentiable such that g
'
(
1
2
)= g
'
(
3
2
) . If a real 
valued function f is defined as ?? ( ?? )=
1
2
[?? ( ?? )+ ?? ( 2 - ?? ) ], then 
(1) ?? ''
( ?? )= 0 for atleast two ?? in ( 0,2) 
(2) ?? ''
( ?? )= 0 for exactly one ?? in ( 0,1) 
(3) ?? ''
( ?? )= 0 for no ?? in ( 0,1) 
(4) f
'
(
3
2
)+ f
'
(
1
2
)= 1 
Q6 - 2024 (30 Jan Shift 2) 
Let ?? ( ?? )= ( ?? + 3)
2
( ?? - 2)
3
, ?? ? [-4,4]. If ?? and ?? are the maximum and minimum 
values of ?? , respectively in [-4,4], then the value of ?? - ?? is : 
(1) 600 
(2) 392 
(3) 608 
(4) 108 
Answer Key 
Q1 (2) 
Q2 (3) 
Q3 (3)  
Q4 (2) 
Q5 (1) 
Q6 (3) 
 
Solutions 
Q1 
5f( x)+ 4f (
1
?? )= x
2
- 2, ??? ? 0 
Substitute ?? ?
1
?? 
5?? (
1
?? )+ 4?? ( ?? )=
1
?? 2
- 2 
On solving (1) and (2) 
?? ( ?? )=
5?? 4
- 2?? 2
- 4
9?? 2
 
?? = 9?? 2
?? ( ?? ) 
?? = 5?? 4
- 2?? 2
- 4. 
????
????
= 20?? 3
- 4?? 
for strictly increasing 
dy
dx
> 0 
4x( 5x
2
- 1)> 0 
x ? ( -
1
v5
, 0)? (
1
v5
, 8) 
Q2 
?? ( ?? )= 3?? (
?? 3
)+ ?? ( 3 - ?? ) and ?? ''
( ?? )> 0??? ? ( 0,3)? f
'
( x) is increasing function 
?? '
( ?? )= 3 ×
1
3
· ?? '
(
?? 3
)- ?? '
( 3 - ?? ) 
= ?? '
(
?? 3
)- ?? '
( 3 - ?? ) 
If g is decreasing in ( 0, ?? ) 
g
'
( x)< 0 
f
'
(
x
3
)+ f
'
( 3 - x)< 0 
f
'
(
x
3
)< f
'
( 3 - x) 
?
x
3
< 3 - x 
? x <
9
4
 
Therefore ?? =
9
4
 
Then 8?? = 8 ×
9
4
= 18 
Q3 
?? ( ?? )= 2?? + 3( ?? )
2
3
?? '
( ?? )= 2 + 2?? -1
3
 = 2 (1 +
1
?? 1
3
)
 = 2 (
?? 1
3
+ 1
?? 1
3
)
 
 
So, maxima ( M) at x = -1&minima ( m) at x = 0 
Q4 
?? ( ?? )=
?? ?? 2
- 6?? - 16
 
Now, 
f
'
( x)=
-( x
2
+ 16)
( x
2
- 6x - 16)
2
 
f
'
( x)< 0 
Thus ?? ( ?? ) is decreasing in 
( -8, -2)? ( -2,8)? ( 8, 8) 
 
 
Q5 
?? '
( ?? )=
?? '
( ?? )- ?? '
( 2 - ?? )
2
, ?? '
(
3
2
)=
?? '
(
3
2
)- ?? '
(
1
2
)
2
= 0 
Also f
'
(
1
2
)=
g
'
(
1
2
) -g
'
(
3
2
)
2
= 0, f
'
(
1
2
)= 0 
? f
'
(
3
2
)= f
'
(
1
2
)= 0 
? roots in (
1
2
, 1) and ( 1,
3
2
) 
? f
''
( x) is zero at least twice in (
1
2
,
3
2
) 
Q6 
f
'
( x)= ( x + 3)
2
· 3( x - 2)
2
+ ( x - 2)
3
2( x + 3)
 = 5( x + 3) ( x - 2)
2
( x + 1)
f
'
( x)= 0, x = -3, -1,2
 
 
 
?? ( -4)= -216 
?? ( -3)= 0, ?? ( 4)= 49 × 8 = 392 
?? = 392, ?? = -216 
?? - ?? = 392 + 216 = 608 
Read More
209 videos|443 docs|143 tests

Top Courses for JEE

FAQs on Applications of Derivatives: JEE Mains Previous Year Questions (2021-2024) - Mathematics (Maths) for JEE Main & Advanced

1. What are some common applications of derivatives in real life?
Ans. Some common applications of derivatives in real life include determining maximum and minimum values, analyzing rates of change, optimizing functions, and modeling physical systems such as motion and growth.
2. How are derivatives used in economics and finance?
Ans. In economics and finance, derivatives are used to analyze and predict changes in variables like stock prices, interest rates, and currency exchange rates. They help in risk management, portfolio optimization, and pricing financial instruments.
3. Can derivatives be used to solve optimization problems?
Ans. Yes, derivatives can be used to solve optimization problems by finding the critical points of a function and determining whether they correspond to a maximum, minimum, or saddle point. This is useful in maximizing profits, minimizing costs, and optimizing processes.
4. What is the relationship between derivatives and tangents in calculus?
Ans. Derivatives represent the slope of a function at a given point, which is equivalent to the slope of the tangent line to the function at that point. This relationship allows us to approximate the behavior of a function near a specific point.
5. How do derivatives help in analyzing motion and velocity?
Ans. Derivatives help in analyzing motion and velocity by providing information about the rate at which an object's position changes with respect to time. The derivative of the position function gives the velocity function, which describes the object's speed and direction at any given moment.
209 videos|443 docs|143 tests
Download as PDF
Explore Courses for JEE exam

Top Courses for JEE

Signup for Free!
Signup to see your scores go up within 7 days! Learn & Practice with 1000+ FREE Notes, Videos & Tests.
10M+ students study on EduRev
Related Searches

pdf

,

mock tests for examination

,

Important questions

,

past year papers

,

study material

,

Applications of Derivatives: JEE Mains Previous Year Questions (2021-2024) | Mathematics (Maths) for JEE Main & Advanced

,

Semester Notes

,

MCQs

,

Free

,

Viva Questions

,

ppt

,

Sample Paper

,

Summary

,

practice quizzes

,

Applications of Derivatives: JEE Mains Previous Year Questions (2021-2024) | Mathematics (Maths) for JEE Main & Advanced

,

Objective type Questions

,

Applications of Derivatives: JEE Mains Previous Year Questions (2021-2024) | Mathematics (Maths) for JEE Main & Advanced

,

Previous Year Questions with Solutions

,

video lectures

,

shortcuts and tricks

,

Exam

,

Extra Questions

;