Page 1
Trigonometric Formula Sheet
De?nition of the Trig Functions
Right Triangle De?nition
Assume that:
0 < ? <
? 2
or 0
< ? < 90
hypotenuse
adjacent
opposite
? sin? =
opp
hyp
csc? =
hyp
opp
cos? =
adj
hyp
sec? =
hyp
adj
tan? =
opp
adj
cot? =
adj
opp
Unit Circle De?nition
Assume ? can be any angle.
x
y
y
x
1
(x,y)
? sin? =
y
1
csc? =
1
y
cos? =
x
1
sec? =
1
x
tan? =
y
x
cot? =
x
y
Domains of the Trig Functions
sin? , 8 ? 2 ( 1 ,1 )
cos? , 8 ? 2 ( 1 ,1 )
tan? , 8 ? 6=
?
n+
1
2
?
? ,wheren2 Z
csc? , 8 ? 6= n? ,wheren2 Z
sec? , 8 ? 6=
?
n+
1
2
?
? ,wheren2 Z
cot? , 8 ? 6= n? ,wheren2 Z
Ranges of the Trig Functions
1? sin? ? 1
1? cos? ? 1
1? tan? ?1
csc? 1 and csc? ? 1
sec? 1 and sec? ? 1
1? cot? ?1
Periods of the Trig Functions
The period of a function is the number, T, such that f (? +T ) = f (? ).
So, if ! is a ?xed number and ? is any angle we have the following periods.
sin(!? ) ) T =
2? !
cos(!? ) ) T =
2? !
tan(!? ) ) T =
? !
csc(!? ) ) T =
2? !
sec(!? ) ) T =
2? !
cot(!? ) ) T =
? !
1
Page 2
Trigonometric Formula Sheet
De?nition of the Trig Functions
Right Triangle De?nition
Assume that:
0 < ? <
? 2
or 0
< ? < 90
hypotenuse
adjacent
opposite
? sin? =
opp
hyp
csc? =
hyp
opp
cos? =
adj
hyp
sec? =
hyp
adj
tan? =
opp
adj
cot? =
adj
opp
Unit Circle De?nition
Assume ? can be any angle.
x
y
y
x
1
(x,y)
? sin? =
y
1
csc? =
1
y
cos? =
x
1
sec? =
1
x
tan? =
y
x
cot? =
x
y
Domains of the Trig Functions
sin? , 8 ? 2 ( 1 ,1 )
cos? , 8 ? 2 ( 1 ,1 )
tan? , 8 ? 6=
?
n+
1
2
?
? ,wheren2 Z
csc? , 8 ? 6= n? ,wheren2 Z
sec? , 8 ? 6=
?
n+
1
2
?
? ,wheren2 Z
cot? , 8 ? 6= n? ,wheren2 Z
Ranges of the Trig Functions
1? sin? ? 1
1? cos? ? 1
1? tan? ?1
csc? 1 and csc? ? 1
sec? 1 and sec? ? 1
1? cot? ?1
Periods of the Trig Functions
The period of a function is the number, T, such that f (? +T ) = f (? ).
So, if ! is a ?xed number and ? is any angle we have the following periods.
sin(!? ) ) T =
2? !
cos(!? ) ) T =
2? !
tan(!? ) ) T =
? !
csc(!? ) ) T =
2? !
sec(!? ) ) T =
2? !
cot(!? ) ) T =
? !
1
Page 3
Trigonometric Formula Sheet
De?nition of the Trig Functions
Right Triangle De?nition
Assume that:
0 < ? <
? 2
or 0
< ? < 90
hypotenuse
adjacent
opposite
? sin? =
opp
hyp
csc? =
hyp
opp
cos? =
adj
hyp
sec? =
hyp
adj
tan? =
opp
adj
cot? =
adj
opp
Unit Circle De?nition
Assume ? can be any angle.
x
y
y
x
1
(x,y)
? sin? =
y
1
csc? =
1
y
cos? =
x
1
sec? =
1
x
tan? =
y
x
cot? =
x
y
Domains of the Trig Functions
sin? , 8 ? 2 ( 1 ,1 )
cos? , 8 ? 2 ( 1 ,1 )
tan? , 8 ? 6=
?
n+
1
2
?
? ,wheren2 Z
csc? , 8 ? 6= n? ,wheren2 Z
sec? , 8 ? 6=
?
n+
1
2
?
? ,wheren2 Z
cot? , 8 ? 6= n? ,wheren2 Z
Ranges of the Trig Functions
1? sin? ? 1
1? cos? ? 1
1? tan? ?1
csc? 1 and csc? ? 1
sec? 1 and sec? ? 1
1? cot? ?1
Periods of the Trig Functions
The period of a function is the number, T, such that f (? +T ) = f (? ).
So, if ! is a ?xed number and ? is any angle we have the following periods.
sin(!? ) ) T =
2? !
cos(!? ) ) T =
2? !
tan(!? ) ) T =
? !
csc(!? ) ) T =
2? !
sec(!? ) ) T =
2? !
cot(!? ) ) T =
? !
1
Identities and Formulas
Tangent and Cotangent Identities
tan? =
sin? cos? cot? =
cos? sin? Reciprocal Identities
sin? =
1
csc? csc? =
1
sin? cos? =
1
sec? sec? =
1
cos? tan? =
1
cot? cot? =
1
tan? Pythagorean Identities
sin
2
? +cos
2
? =1
tan
2
? +1=sec
2
? 1+cot
2
? =csc
2
? Even and Odd Formulas
sin( ? )= sin? cos( ? )=cos? tan( ? )= tan? csc( ? )= csc? sec( ? )=sec? cot( ? )= cot? Periodic Formulas
If n is an integer
sin(? +2? n) = sin? cos(? +2? n)=cos? tan(? +? n)=tan? csc(? +2? n)=csc? sec(? +2? n)=sec? cot(? +? n)=cot? Double Angle Formulas
sin(2? )=2sin? cos? cos(2? )=cos
2
? sin
2
? =2cos
2
? 1
=1 2sin
2
? tan(2? )=
2tan? 1 tan
2
? Degrees to Radians Formulas
If x is an angle in degrees and t is an angle in
radians then:
? 180
=
t
x
) t =
? x
180
and x =
180
t
? Half Angle Formulas
sin? =±
r
1 cos(2? )
2
cos? =±
r
1+cos(2? )
2
tan? =±
s
1 cos(2? )
1+cos(2? )
Sum and Di? erence Formulas
sin(? ±