Page 1
Matrices
4.1 Introduction
A rectangular array of ?? * ?? numbers consisting of ?? rows and ?? columns is termed as a matrix
of order ?? × ?? and given as:
?? = (
?? 11
?? 12
… ?? 1??
?? 21
?? 22
… ?? 2??
… … … …
?? ?? 1
?? ?? 2
… ?? ????
) or ?? = [
?? 11
?? 12
… ?? 1??
?? 21
?? 22
… ?? 2??
… … … …
?? ?? 1
?? ?? 2
… ?? ????
]
It may also be denoted as ?? = [?? ????
], ?? = 1…?? , ?? = 1…??
Null Matrix: A matrix with all zero elements is known as a null matrix or zero matrix.
Square matrix: A matrix having equal number of rows and columns is called a square matrix.
?? = (
?? 11
?? 12
… ?? 1??
?? 21
?? 22
… ?? 2??
… … … …
?? ?? 1
?? ?? 2
… ?? ????
) is a square matrix of order ?? × ??
Sum of all elements in the principal diagonal of a square matrix ?? is known as ‘Trace ?? ’
or ‘Spur ?? ’. ? Trace ?? = ?? ????
+ ?? ????
+ ?+ ?? ????
Identity or Unit Matrix: A square matrix having all principal diagonal elements unity and non-
diagonal elements zero is called an identity matrix.
?? = (
1 0 0
0 1 0
0 0 1
) is an identity matrix of order 3
Triangular Matrix: A square matrix in which all elements above or below principal diagonal are
zero is called a triangular matrix.
?? = (
3 0 0
4 2 0
2 6 1
) ?? = (
3 5 2
0 2 6
0 0 1
)
Lower Triangular Matrix Upper Triangular Matrix
Diagonal Matrix: A square matrix having all non-diagonal elements zero is called a diagonal
matrix.
?? = (
3 0 0
0 4 0
0 0 2
) is a diagonal matrix of order 3
Scalar Matrix: A diagonal matrix with all equal elements is called a scalar matrix.
Page 2
Matrices
4.1 Introduction
A rectangular array of ?? * ?? numbers consisting of ?? rows and ?? columns is termed as a matrix
of order ?? × ?? and given as:
?? = (
?? 11
?? 12
… ?? 1??
?? 21
?? 22
… ?? 2??
… … … …
?? ?? 1
?? ?? 2
… ?? ????
) or ?? = [
?? 11
?? 12
… ?? 1??
?? 21
?? 22
… ?? 2??
… … … …
?? ?? 1
?? ?? 2
… ?? ????
]
It may also be denoted as ?? = [?? ????
], ?? = 1…?? , ?? = 1…??
Null Matrix: A matrix with all zero elements is known as a null matrix or zero matrix.
Square matrix: A matrix having equal number of rows and columns is called a square matrix.
?? = (
?? 11
?? 12
… ?? 1??
?? 21
?? 22
… ?? 2??
… … … …
?? ?? 1
?? ?? 2
… ?? ????
) is a square matrix of order ?? × ??
Sum of all elements in the principal diagonal of a square matrix ?? is known as ‘Trace ?? ’
or ‘Spur ?? ’. ? Trace ?? = ?? ????
+ ?? ????
+ ?+ ?? ????
Identity or Unit Matrix: A square matrix having all principal diagonal elements unity and non-
diagonal elements zero is called an identity matrix.
?? = (
1 0 0
0 1 0
0 0 1
) is an identity matrix of order 3
Triangular Matrix: A square matrix in which all elements above or below principal diagonal are
zero is called a triangular matrix.
?? = (
3 0 0
4 2 0
2 6 1
) ?? = (
3 5 2
0 2 6
0 0 1
)
Lower Triangular Matrix Upper Triangular Matrix
Diagonal Matrix: A square matrix having all non-diagonal elements zero is called a diagonal
matrix.
?? = (
3 0 0
0 4 0
0 0 2
) is a diagonal matrix of order 3
Scalar Matrix: A diagonal matrix with all equal elements is called a scalar matrix.
?? = (
3 0 0
0 3 0
0 0 3
) is a scalar matrix of order 3
Singular Matrix: If the determinant of a square matrix is zero i.e., |?? | = 0 , then it is known as
a singular matrix.
?? = (
1 -1 0
0 1 -3
-2 1 3
) is a singular matrix of order 3
Transpose: The matrix ?? '
or ?? ?? obtained by interchanging rows and columns of a matrix ?? is
known as its transpose.
?? = (
1 3 5
2 -1 4
0 2 3
) ?? ?? = (
1 2 0
3 -1 2
5 4 3
)
Symmetric and Skew-Symmetric Matrices:
A square matrix ?? = [?? ????
] is said to be symmetric if ?? ?? = ?? or ?? ????
= ?? ????
? ?? ,?? and skew-
symmetric if ?? ?? = -?? or ?? ????
= -?? ????
? ?? ,??
?? = (
1 2 3
2 2 4
3 4 3
) ?? = (
0 -1 2
1 0 -3
-2 3 0
)
Symmetric Matrix Skew- Symmetric Matrix
Results: 1. Diagonal elements of a skew-symmetric matrix are all zero as
?? ????
= -?? ????
? ?? ????
= 0
2. Any real matrix can be uniquely expressed as the sum of a symmetric and a skew-
symmetric matrix as ?? =
1
2
( ?? + ?? ?? )+
1
2
( ?? - ?? ?? ) , where ( ?? + ?? ?? ) is symmetric, while
( ?? - ?? ?? ) is skew-symmetric
Orthogonal Matrix
A square matrix ?? = [?? ????
] is said to be orthogonal if ????
?? = ?? = ?? ?? ??
Result: If ?? and ?? are two orthogonal matrices, then ???? is also a orthogonal matrix.
Proof: ( ???? ) ( ???? )
?? = ( ???? ) ?? ?? ?? ?? ? ( ???? )
?? = ?? ?? ?? ??
= ?? ( ?? ?? ?? ) ?? ??
= ???? ?? ?? ? ?? is an orthogonal matrix
= ?? ?? ?? = ?? ? ?? is an orthogonal matrix
4.2 Algebra of Matrices
Addition and Subtraction of Matrix: Addition or subtraction can be performed on two matrices
if and only if they are of same order.
Page 3
Matrices
4.1 Introduction
A rectangular array of ?? * ?? numbers consisting of ?? rows and ?? columns is termed as a matrix
of order ?? × ?? and given as:
?? = (
?? 11
?? 12
… ?? 1??
?? 21
?? 22
… ?? 2??
… … … …
?? ?? 1
?? ?? 2
… ?? ????
) or ?? = [
?? 11
?? 12
… ?? 1??
?? 21
?? 22
… ?? 2??
… … … …
?? ?? 1
?? ?? 2
… ?? ????
]
It may also be denoted as ?? = [?? ????
], ?? = 1…?? , ?? = 1…??
Null Matrix: A matrix with all zero elements is known as a null matrix or zero matrix.
Square matrix: A matrix having equal number of rows and columns is called a square matrix.
?? = (
?? 11
?? 12
… ?? 1??
?? 21
?? 22
… ?? 2??
… … … …
?? ?? 1
?? ?? 2
… ?? ????
) is a square matrix of order ?? × ??
Sum of all elements in the principal diagonal of a square matrix ?? is known as ‘Trace ?? ’
or ‘Spur ?? ’. ? Trace ?? = ?? ????
+ ?? ????
+ ?+ ?? ????
Identity or Unit Matrix: A square matrix having all principal diagonal elements unity and non-
diagonal elements zero is called an identity matrix.
?? = (
1 0 0
0 1 0
0 0 1
) is an identity matrix of order 3
Triangular Matrix: A square matrix in which all elements above or below principal diagonal are
zero is called a triangular matrix.
?? = (
3 0 0
4 2 0
2 6 1
) ?? = (
3 5 2
0 2 6
0 0 1
)
Lower Triangular Matrix Upper Triangular Matrix
Diagonal Matrix: A square matrix having all non-diagonal elements zero is called a diagonal
matrix.
?? = (
3 0 0
0 4 0
0 0 2
) is a diagonal matrix of order 3
Scalar Matrix: A diagonal matrix with all equal elements is called a scalar matrix.
?? = (
3 0 0
0 3 0
0 0 3
) is a scalar matrix of order 3
Singular Matrix: If the determinant of a square matrix is zero i.e., |?? | = 0 , then it is known as
a singular matrix.
?? = (
1 -1 0
0 1 -3
-2 1 3
) is a singular matrix of order 3
Transpose: The matrix ?? '
or ?? ?? obtained by interchanging rows and columns of a matrix ?? is
known as its transpose.
?? = (
1 3 5
2 -1 4
0 2 3
) ?? ?? = (
1 2 0
3 -1 2
5 4 3
)
Symmetric and Skew-Symmetric Matrices:
A square matrix ?? = [?? ????
] is said to be symmetric if ?? ?? = ?? or ?? ????
= ?? ????
? ?? ,?? and skew-
symmetric if ?? ?? = -?? or ?? ????
= -?? ????
? ?? ,??
?? = (
1 2 3
2 2 4
3 4 3
) ?? = (
0 -1 2
1 0 -3
-2 3 0
)
Symmetric Matrix Skew- Symmetric Matrix
Results: 1. Diagonal elements of a skew-symmetric matrix are all zero as
?? ????
= -?? ????
? ?? ????
= 0
2. Any real matrix can be uniquely expressed as the sum of a symmetric and a skew-
symmetric matrix as ?? =
1
2
( ?? + ?? ?? )+
1
2
( ?? - ?? ?? ) , where ( ?? + ?? ?? ) is symmetric, while
( ?? - ?? ?? ) is skew-symmetric
Orthogonal Matrix
A square matrix ?? = [?? ????
] is said to be orthogonal if ????
?? = ?? = ?? ?? ??
Result: If ?? and ?? are two orthogonal matrices, then ???? is also a orthogonal matrix.
Proof: ( ???? ) ( ???? )
?? = ( ???? ) ?? ?? ?? ?? ? ( ???? )
?? = ?? ?? ?? ??
= ?? ( ?? ?? ?? ) ?? ??
= ???? ?? ?? ? ?? is an orthogonal matrix
= ?? ?? ?? = ?? ? ?? is an orthogonal matrix
4.2 Algebra of Matrices
Addition and Subtraction of Matrix: Addition or subtraction can be performed on two matrices
if and only if they are of same order.
?? = (
?? 11
?? 12
?? 13
?? 21
?? 22
?? 23
?? 31
?? 32
?? 33
) ?? = (
?? 11
?? 12
?? 13
?? 21
?? 22
?? 23
?? 31
?? 32
?? 33
)
Then ?? ± ?? = (
?? 11
± ?? 11
?? 12
± ?? 12
?? 13
± ?? 13
?? 21
± ?? 21
?? 22
± ?? 22
?? 23
± ?? 23
?? 31
± ?? 31
?? 32
± ?? 32
?? 33
± ?? 33
)
Multiplication of Matrix by a Scalar: If we multiply a matrix ?? by a scalar ?? , then each element
of the matrix is multiplied by ??
?? = (
?? 11
?? 12
?? 13
?? 21
?? 22
?? 23
?? 31
?? 32
?? 33
) ???? = (
????
11
?? ?? 12
?? ?? 13
?? ?? 21
????
22
?? ?? 23
?? ?? 31
?? ?? 32
????
33
)
Multiplication of Two Matrices: Matrix product ???? is possible only if number of columns in
matrix ?? are same as number of rows in matrix ?? .
?? = (
?? 11
?? 12
?? 13
?? 21
?? 22
?? 23
) ?? = (
?? 11
?? 12
?? 21
?? 22
?? 31
?? 32
)
?? = ???? = (
?? 11
= ?? 11
?? 11
+ ?? 12
?? 21
+ ?? 13
?? 31
?? 12
= ?? 11
?? 12
+ ?? 12
?? 22
+ ?? 13
?? 32
?? 21
= ?? 21
?? 11
+ ?? 22
?? 21
+ ?? 23
?? 31
?? 22
= ?? 21
?? 12
+ ?? 22
?? 22
+ ?? 23
?? 32
)
Note that: (i) ?? ?? ×?? ?? ?? ×?? = ?? ?? ×??
(ii) ???? ? ???? in general
(iii) ???? = 0 does not necessarily imply that ?? = 0 or ?? = 0
(iv) ???? = 0 does not necessarily imply that ???? = 0
For example, ?? = (
0 1
0 0
) ?? = (
1 0
0 0
) ???? = (
0 0
0 0
) ???? = (
0 1
0 0
)
Example 1 If ?? = (
sin?? cos?? sin?? cos?? ) ?? = (
sin?? sin?? cos?? cos ?? ) find ???? and ????
Solution: ???? = (
sin
2
?? + cos
2
?? sin
2
?? + cos
2
??
sin
2
?? + cos
2
?? sin
2
?? + cos
2
?? )= (
1 1
1 1
)
???? = (
2sin
2
?? sin2?? sin2?? 2cos
2
?? )
Example 2 Express the matrix ?? = (
1 3 5
2 -1 4
0 2 3
) as the sum of symmetric and skew-
symmetric matrices.
Solution: ?? = (
1 3 5
2 -1 4
1 2 3
) ?? ?? = (
1 2 1
3 -1 2
5 4 3
)
Page 4
Matrices
4.1 Introduction
A rectangular array of ?? * ?? numbers consisting of ?? rows and ?? columns is termed as a matrix
of order ?? × ?? and given as:
?? = (
?? 11
?? 12
… ?? 1??
?? 21
?? 22
… ?? 2??
… … … …
?? ?? 1
?? ?? 2
… ?? ????
) or ?? = [
?? 11
?? 12
… ?? 1??
?? 21
?? 22
… ?? 2??
… … … …
?? ?? 1
?? ?? 2
… ?? ????
]
It may also be denoted as ?? = [?? ????
], ?? = 1…?? , ?? = 1…??
Null Matrix: A matrix with all zero elements is known as a null matrix or zero matrix.
Square matrix: A matrix having equal number of rows and columns is called a square matrix.
?? = (
?? 11
?? 12
… ?? 1??
?? 21
?? 22
… ?? 2??
… … … …
?? ?? 1
?? ?? 2
… ?? ????
) is a square matrix of order ?? × ??
Sum of all elements in the principal diagonal of a square matrix ?? is known as ‘Trace ?? ’
or ‘Spur ?? ’. ? Trace ?? = ?? ????
+ ?? ????
+ ?+ ?? ????
Identity or Unit Matrix: A square matrix having all principal diagonal elements unity and non-
diagonal elements zero is called an identity matrix.
?? = (
1 0 0
0 1 0
0 0 1
) is an identity matrix of order 3
Triangular Matrix: A square matrix in which all elements above or below principal diagonal are
zero is called a triangular matrix.
?? = (
3 0 0
4 2 0
2 6 1
) ?? = (
3 5 2
0 2 6
0 0 1
)
Lower Triangular Matrix Upper Triangular Matrix
Diagonal Matrix: A square matrix having all non-diagonal elements zero is called a diagonal
matrix.
?? = (
3 0 0
0 4 0
0 0 2
) is a diagonal matrix of order 3
Scalar Matrix: A diagonal matrix with all equal elements is called a scalar matrix.
?? = (
3 0 0
0 3 0
0 0 3
) is a scalar matrix of order 3
Singular Matrix: If the determinant of a square matrix is zero i.e., |?? | = 0 , then it is known as
a singular matrix.
?? = (
1 -1 0
0 1 -3
-2 1 3
) is a singular matrix of order 3
Transpose: The matrix ?? '
or ?? ?? obtained by interchanging rows and columns of a matrix ?? is
known as its transpose.
?? = (
1 3 5
2 -1 4
0 2 3
) ?? ?? = (
1 2 0
3 -1 2
5 4 3
)
Symmetric and Skew-Symmetric Matrices:
A square matrix ?? = [?? ????
] is said to be symmetric if ?? ?? = ?? or ?? ????
= ?? ????
? ?? ,?? and skew-
symmetric if ?? ?? = -?? or ?? ????
= -?? ????
? ?? ,??
?? = (
1 2 3
2 2 4
3 4 3
) ?? = (
0 -1 2
1 0 -3
-2 3 0
)
Symmetric Matrix Skew- Symmetric Matrix
Results: 1. Diagonal elements of a skew-symmetric matrix are all zero as
?? ????
= -?? ????
? ?? ????
= 0
2. Any real matrix can be uniquely expressed as the sum of a symmetric and a skew-
symmetric matrix as ?? =
1
2
( ?? + ?? ?? )+
1
2
( ?? - ?? ?? ) , where ( ?? + ?? ?? ) is symmetric, while
( ?? - ?? ?? ) is skew-symmetric
Orthogonal Matrix
A square matrix ?? = [?? ????
] is said to be orthogonal if ????
?? = ?? = ?? ?? ??
Result: If ?? and ?? are two orthogonal matrices, then ???? is also a orthogonal matrix.
Proof: ( ???? ) ( ???? )
?? = ( ???? ) ?? ?? ?? ?? ? ( ???? )
?? = ?? ?? ?? ??
= ?? ( ?? ?? ?? ) ?? ??
= ???? ?? ?? ? ?? is an orthogonal matrix
= ?? ?? ?? = ?? ? ?? is an orthogonal matrix
4.2 Algebra of Matrices
Addition and Subtraction of Matrix: Addition or subtraction can be performed on two matrices
if and only if they are of same order.
?? = (
?? 11
?? 12
?? 13
?? 21
?? 22
?? 23
?? 31
?? 32
?? 33
) ?? = (
?? 11
?? 12
?? 13
?? 21
?? 22
?? 23
?? 31
?? 32
?? 33
)
Then ?? ± ?? = (
?? 11
± ?? 11
?? 12
± ?? 12
?? 13
± ?? 13
?? 21
± ?? 21
?? 22
± ?? 22
?? 23
± ?? 23
?? 31
± ?? 31
?? 32
± ?? 32
?? 33
± ?? 33
)
Multiplication of Matrix by a Scalar: If we multiply a matrix ?? by a scalar ?? , then each element
of the matrix is multiplied by ??
?? = (
?? 11
?? 12
?? 13
?? 21
?? 22
?? 23
?? 31
?? 32
?? 33
) ???? = (
????
11
?? ?? 12
?? ?? 13
?? ?? 21
????
22
?? ?? 23
?? ?? 31
?? ?? 32
????
33
)
Multiplication of Two Matrices: Matrix product ???? is possible only if number of columns in
matrix ?? are same as number of rows in matrix ?? .
?? = (
?? 11
?? 12
?? 13
?? 21
?? 22
?? 23
) ?? = (
?? 11
?? 12
?? 21
?? 22
?? 31
?? 32
)
?? = ???? = (
?? 11
= ?? 11
?? 11
+ ?? 12
?? 21
+ ?? 13
?? 31
?? 12
= ?? 11
?? 12
+ ?? 12
?? 22
+ ?? 13
?? 32
?? 21
= ?? 21
?? 11
+ ?? 22
?? 21
+ ?? 23
?? 31
?? 22
= ?? 21
?? 12
+ ?? 22
?? 22
+ ?? 23
?? 32
)
Note that: (i) ?? ?? ×?? ?? ?? ×?? = ?? ?? ×??
(ii) ???? ? ???? in general
(iii) ???? = 0 does not necessarily imply that ?? = 0 or ?? = 0
(iv) ???? = 0 does not necessarily imply that ???? = 0
For example, ?? = (
0 1
0 0
) ?? = (
1 0
0 0
) ???? = (
0 0
0 0
) ???? = (
0 1
0 0
)
Example 1 If ?? = (
sin?? cos?? sin?? cos?? ) ?? = (
sin?? sin?? cos?? cos ?? ) find ???? and ????
Solution: ???? = (
sin
2
?? + cos
2
?? sin
2
?? + cos
2
??
sin
2
?? + cos
2
?? sin
2
?? + cos
2
?? )= (
1 1
1 1
)
???? = (
2sin
2
?? sin2?? sin2?? 2cos
2
?? )
Example 2 Express the matrix ?? = (
1 3 5
2 -1 4
0 2 3
) as the sum of symmetric and skew-
symmetric matrices.
Solution: ?? = (
1 3 5
2 -1 4
1 2 3
) ?? ?? = (
1 2 1
3 -1 2
5 4 3
)
1
2
( ?? + ?? ?? )= (
1
5
2
3
5
2
-1 3
3 3 3
) ,
1
2
( ?? - ?? ?? )= (
0
1
2
2
-1
2
0 1
-2 -1 0
)
? ?? = (
1
5
2
3
5
2
-1 3
3 3 3
) + (
0
1
2
2
-1
2
0 1
-2 -1 0
)
: Symmetric Skew-Symmetric
4.3 Minors, Cofactors, Determinants and Adjoint of a matrix
Minors associated with elements of a square matrix
A minor of each element of a square matrix is the unique value of the determinant associated with
it, which is obtained after eliminating the row and column in which the element exists.
For a 2 × 2 matrix ?? = (
?? 11
?? 12
?? 21
?? 22
)
?? 11
= ?? 22
, ?? 12
= ?? 21
, ?? 21
= ?? 12
, ?? 22
= ?? 11
For a 3 × 3 matrix ?? = (
?? 11
?? 12
?? 13
?? 21
?? 22
?? 23
?? 31
?? 32
?? 33
)
?? 11
= |
?? 22
?? 23
?? 32
?? 33
| , ?? 12
= |
?? 21
?? 23
?? 31
?? 33
| ,…, ?? 33
= |
?? 11
?? 12
?? 21
?? 22
|
Cofactors associated with elements of a square matrix
The cofactor of each element is obtained on multiplying its minor by ( -1)
?? +?? .
?? ????
= ( -1)
?? +?? ?? ????
Determinant of a square matrix
Every square matrix is associated with a determinant and is denoted by det ( ?? ) or |?? |.
det ( ?? )= |?? | = |
?? 11
?? 12
… ?? 1??
?? 21
?? 22
… ?? 2??
… … … …
?? ?? 1
?? ?? 2
… ?? ????
|
Determinant of order ?? can be expanded by any one row or column using the formula
|?? | = ? ?? ????
?? ?? =1
?? ????
, where ?? ????
is the cofactor corresponding to the element ?? ????
.
A determinant of order 2 is evaluated as:
|?? | = |
?? 11
?? 12
?? 21
?? 22
| = ?? 11
?? 22
- ?? 12
?? 21
A determinant of order 3 is evaluated as:
Page 5
Matrices
4.1 Introduction
A rectangular array of ?? * ?? numbers consisting of ?? rows and ?? columns is termed as a matrix
of order ?? × ?? and given as:
?? = (
?? 11
?? 12
… ?? 1??
?? 21
?? 22
… ?? 2??
… … … …
?? ?? 1
?? ?? 2
… ?? ????
) or ?? = [
?? 11
?? 12
… ?? 1??
?? 21
?? 22
… ?? 2??
… … … …
?? ?? 1
?? ?? 2
… ?? ????
]
It may also be denoted as ?? = [?? ????
], ?? = 1…?? , ?? = 1…??
Null Matrix: A matrix with all zero elements is known as a null matrix or zero matrix.
Square matrix: A matrix having equal number of rows and columns is called a square matrix.
?? = (
?? 11
?? 12
… ?? 1??
?? 21
?? 22
… ?? 2??
… … … …
?? ?? 1
?? ?? 2
… ?? ????
) is a square matrix of order ?? × ??
Sum of all elements in the principal diagonal of a square matrix ?? is known as ‘Trace ?? ’
or ‘Spur ?? ’. ? Trace ?? = ?? ????
+ ?? ????
+ ?+ ?? ????
Identity or Unit Matrix: A square matrix having all principal diagonal elements unity and non-
diagonal elements zero is called an identity matrix.
?? = (
1 0 0
0 1 0
0 0 1
) is an identity matrix of order 3
Triangular Matrix: A square matrix in which all elements above or below principal diagonal are
zero is called a triangular matrix.
?? = (
3 0 0
4 2 0
2 6 1
) ?? = (
3 5 2
0 2 6
0 0 1
)
Lower Triangular Matrix Upper Triangular Matrix
Diagonal Matrix: A square matrix having all non-diagonal elements zero is called a diagonal
matrix.
?? = (
3 0 0
0 4 0
0 0 2
) is a diagonal matrix of order 3
Scalar Matrix: A diagonal matrix with all equal elements is called a scalar matrix.
?? = (
3 0 0
0 3 0
0 0 3
) is a scalar matrix of order 3
Singular Matrix: If the determinant of a square matrix is zero i.e., |?? | = 0 , then it is known as
a singular matrix.
?? = (
1 -1 0
0 1 -3
-2 1 3
) is a singular matrix of order 3
Transpose: The matrix ?? '
or ?? ?? obtained by interchanging rows and columns of a matrix ?? is
known as its transpose.
?? = (
1 3 5
2 -1 4
0 2 3
) ?? ?? = (
1 2 0
3 -1 2
5 4 3
)
Symmetric and Skew-Symmetric Matrices:
A square matrix ?? = [?? ????
] is said to be symmetric if ?? ?? = ?? or ?? ????
= ?? ????
? ?? ,?? and skew-
symmetric if ?? ?? = -?? or ?? ????
= -?? ????
? ?? ,??
?? = (
1 2 3
2 2 4
3 4 3
) ?? = (
0 -1 2
1 0 -3
-2 3 0
)
Symmetric Matrix Skew- Symmetric Matrix
Results: 1. Diagonal elements of a skew-symmetric matrix are all zero as
?? ????
= -?? ????
? ?? ????
= 0
2. Any real matrix can be uniquely expressed as the sum of a symmetric and a skew-
symmetric matrix as ?? =
1
2
( ?? + ?? ?? )+
1
2
( ?? - ?? ?? ) , where ( ?? + ?? ?? ) is symmetric, while
( ?? - ?? ?? ) is skew-symmetric
Orthogonal Matrix
A square matrix ?? = [?? ????
] is said to be orthogonal if ????
?? = ?? = ?? ?? ??
Result: If ?? and ?? are two orthogonal matrices, then ???? is also a orthogonal matrix.
Proof: ( ???? ) ( ???? )
?? = ( ???? ) ?? ?? ?? ?? ? ( ???? )
?? = ?? ?? ?? ??
= ?? ( ?? ?? ?? ) ?? ??
= ???? ?? ?? ? ?? is an orthogonal matrix
= ?? ?? ?? = ?? ? ?? is an orthogonal matrix
4.2 Algebra of Matrices
Addition and Subtraction of Matrix: Addition or subtraction can be performed on two matrices
if and only if they are of same order.
?? = (
?? 11
?? 12
?? 13
?? 21
?? 22
?? 23
?? 31
?? 32
?? 33
) ?? = (
?? 11
?? 12
?? 13
?? 21
?? 22
?? 23
?? 31
?? 32
?? 33
)
Then ?? ± ?? = (
?? 11
± ?? 11
?? 12
± ?? 12
?? 13
± ?? 13
?? 21
± ?? 21
?? 22
± ?? 22
?? 23
± ?? 23
?? 31
± ?? 31
?? 32
± ?? 32
?? 33
± ?? 33
)
Multiplication of Matrix by a Scalar: If we multiply a matrix ?? by a scalar ?? , then each element
of the matrix is multiplied by ??
?? = (
?? 11
?? 12
?? 13
?? 21
?? 22
?? 23
?? 31
?? 32
?? 33
) ???? = (
????
11
?? ?? 12
?? ?? 13
?? ?? 21
????
22
?? ?? 23
?? ?? 31
?? ?? 32
????
33
)
Multiplication of Two Matrices: Matrix product ???? is possible only if number of columns in
matrix ?? are same as number of rows in matrix ?? .
?? = (
?? 11
?? 12
?? 13
?? 21
?? 22
?? 23
) ?? = (
?? 11
?? 12
?? 21
?? 22
?? 31
?? 32
)
?? = ???? = (
?? 11
= ?? 11
?? 11
+ ?? 12
?? 21
+ ?? 13
?? 31
?? 12
= ?? 11
?? 12
+ ?? 12
?? 22
+ ?? 13
?? 32
?? 21
= ?? 21
?? 11
+ ?? 22
?? 21
+ ?? 23
?? 31
?? 22
= ?? 21
?? 12
+ ?? 22
?? 22
+ ?? 23
?? 32
)
Note that: (i) ?? ?? ×?? ?? ?? ×?? = ?? ?? ×??
(ii) ???? ? ???? in general
(iii) ???? = 0 does not necessarily imply that ?? = 0 or ?? = 0
(iv) ???? = 0 does not necessarily imply that ???? = 0
For example, ?? = (
0 1
0 0
) ?? = (
1 0
0 0
) ???? = (
0 0
0 0
) ???? = (
0 1
0 0
)
Example 1 If ?? = (
sin?? cos?? sin?? cos?? ) ?? = (
sin?? sin?? cos?? cos ?? ) find ???? and ????
Solution: ???? = (
sin
2
?? + cos
2
?? sin
2
?? + cos
2
??
sin
2
?? + cos
2
?? sin
2
?? + cos
2
?? )= (
1 1
1 1
)
???? = (
2sin
2
?? sin2?? sin2?? 2cos
2
?? )
Example 2 Express the matrix ?? = (
1 3 5
2 -1 4
0 2 3
) as the sum of symmetric and skew-
symmetric matrices.
Solution: ?? = (
1 3 5
2 -1 4
1 2 3
) ?? ?? = (
1 2 1
3 -1 2
5 4 3
)
1
2
( ?? + ?? ?? )= (
1
5
2
3
5
2
-1 3
3 3 3
) ,
1
2
( ?? - ?? ?? )= (
0
1
2
2
-1
2
0 1
-2 -1 0
)
? ?? = (
1
5
2
3
5
2
-1 3
3 3 3
) + (
0
1
2
2
-1
2
0 1
-2 -1 0
)
: Symmetric Skew-Symmetric
4.3 Minors, Cofactors, Determinants and Adjoint of a matrix
Minors associated with elements of a square matrix
A minor of each element of a square matrix is the unique value of the determinant associated with
it, which is obtained after eliminating the row and column in which the element exists.
For a 2 × 2 matrix ?? = (
?? 11
?? 12
?? 21
?? 22
)
?? 11
= ?? 22
, ?? 12
= ?? 21
, ?? 21
= ?? 12
, ?? 22
= ?? 11
For a 3 × 3 matrix ?? = (
?? 11
?? 12
?? 13
?? 21
?? 22
?? 23
?? 31
?? 32
?? 33
)
?? 11
= |
?? 22
?? 23
?? 32
?? 33
| , ?? 12
= |
?? 21
?? 23
?? 31
?? 33
| ,…, ?? 33
= |
?? 11
?? 12
?? 21
?? 22
|
Cofactors associated with elements of a square matrix
The cofactor of each element is obtained on multiplying its minor by ( -1)
?? +?? .
?? ????
= ( -1)
?? +?? ?? ????
Determinant of a square matrix
Every square matrix is associated with a determinant and is denoted by det ( ?? ) or |?? |.
det ( ?? )= |?? | = |
?? 11
?? 12
… ?? 1??
?? 21
?? 22
… ?? 2??
… … … …
?? ?? 1
?? ?? 2
… ?? ????
|
Determinant of order ?? can be expanded by any one row or column using the formula
|?? | = ? ?? ????
?? ?? =1
?? ????
, where ?? ????
is the cofactor corresponding to the element ?? ????
.
A determinant of order 2 is evaluated as:
|?? | = |
?? 11
?? 12
?? 21
?? 22
| = ?? 11
?? 22
- ?? 12
?? 21
A determinant of order 3 is evaluated as:
|?? | = |
?? 11
?? 12
?? 13
?? 21
?? 22
?? 23
?? 31
?? 32
?? 33
| = ? ( -1)
?? +?? ?? ????
?? ????
?? ?? =1
=?? 11
|
?? 11
?? 12
?? 21
?? 22
| - ?? 12
|
?? 11
?? 12
?? 21
?? 22
| + ?? 13
|
?? 11
?? 12
?? 21
?? 22
|
=?? 11
( ?? 22
?? 33
- ?? 32
?? 23
)- ?? 12
( ?? 21
?? 33
- ?? 31
?? 23
)+ ?? 13
( ?? 21
?? 32
- ?? 31
?? 22
)
Note: A determinant may be evaluated using any row or column, value remains the same.
Properties of Determinants
? Value of a determinant remains unchanged if rows and columns are interchanged i.e.
|?? | = |?? ?? |
? If any two rows or columns are interchanged, the value of determinant is multiplied
by ( -1)
? The value of determinant remains unchanged if ?? times elements of a row (column) is
added to another row (column).
? If elements in any row (column) in a determinant are multiplied by a scalar ?? , then
value of determinant is multiplied by ?? . Thus, if each element in the determinant is
multiplied by ?? , value of determinant of order ?? multiplies by ?? ?? i.e., |???? | = ?? ?? |?? |
? If ?? and ?? are square matrices of same order, then |???? | = |?? ||?? |
Adjoint of a square matrix
The adjoint of a square matrix ?? of order ?? is the transpose of the matrix of cofactors of each
element. If ?? 11
, ?? 12
, ?? 13
,…, ?? ????
be the cofactors of elements ?? 11
, ?? 12
, ?? 13
,…, ?? ????
of the matrix
?? . Then adjoint of ?? is given by
???? ?? ( ?? )= (
?? 11
?? 12
… ?? 1??
?? 21
?? 22
… ?? 2??
… … … …
?? ?? 1
?? ?? 2
… ?? ????
)
?? = (
?? 11
?? 21
… ?? ?? 1
?? 12
?? 22
… ?? ?? 2
… … … …
?? 1?? ?? 2??
… ?? ????
)
4.4 Inverse of a Matrix
The inverse of a square matrix ?? of order ?? , denoted by ?? -1
is such that
?? ?? -1
= ?? -1
?? = ?? ?? where ?? ?? is an identity matrix of order ?? .
A matrix is invertible if and only if matrix is non-singular i.e., |?? | ? 0. There are many methods
to find inverse of a square matrix.
4.4.1 Inverse of a matrix using adjoint
Working rule to find inverse of a matrix using adjoint:
1. Calculate |?? |
i. If |?? | = 0 , inverse does not exist
Read More