JEE Exam  >  JEE Notes  >  Mathematics (Maths) for JEE Main & Advanced  >  Flashcards: Binomial Theorem & its Simple Applications

Flashcards: Binomial Theorem & its Simple Applications | Mathematics (Maths) for JEE Main & Advanced PDF Download

Download, print and study this document offline
Please wait while the PDF view is loading
 Page 1


 
 
 
 
 
 
 
BINOMIAL EXPRESSION 
An algebraic expression containing only two terms is called a binomial expression. Such as ?? + ?? , 2?? +
5?? , 2?? +
1
?? , ?? +
?? ?? etc. all are binomial expressions. 
  
Page 2


 
 
 
 
 
 
 
BINOMIAL EXPRESSION 
An algebraic expression containing only two terms is called a binomial expression. Such as ?? + ?? , 2?? +
5?? , 2?? +
1
?? , ?? +
?? ?? etc. all are binomial expressions. 
  
 
 
 
 
BINOMIAL THEOREM FOR POSITIVE 
INTEGRAL INDEX 
If ?? , ?? ? ?? , then ??? ? ?? 
(?? + ?? )
?? = 
?? ?? 0
?? ?? + 
?? ?? 1
?? ?? -1
?? + 
?? ?? 2
?? ?? -2
?? 2
+ ? + 
?? ?? ?? ?? ?? -?? ?? ?? + ? + 
?? ?? ?? ?? ?? 
Here all  
?? ?? ?? are called binomial coefficient 
 
?? ?? ?? =
?? !
?? ! (?? - ?? )!
 
 
?? ?? 0
= 1 = 
?? ?? ?? 
?? ?? 1
= ?? 
 
?? ?? ?? = 
?? ?? ?? -?? ; 0 = ?? = ?? 
  
Page 3


 
 
 
 
 
 
 
BINOMIAL EXPRESSION 
An algebraic expression containing only two terms is called a binomial expression. Such as ?? + ?? , 2?? +
5?? , 2?? +
1
?? , ?? +
?? ?? etc. all are binomial expressions. 
  
 
 
 
 
BINOMIAL THEOREM FOR POSITIVE 
INTEGRAL INDEX 
If ?? , ?? ? ?? , then ??? ? ?? 
(?? + ?? )
?? = 
?? ?? 0
?? ?? + 
?? ?? 1
?? ?? -1
?? + 
?? ?? 2
?? ?? -2
?? 2
+ ? + 
?? ?? ?? ?? ?? -?? ?? ?? + ? + 
?? ?? ?? ?? ?? 
Here all  
?? ?? ?? are called binomial coefficient 
 
?? ?? ?? =
?? !
?? ! (?? - ?? )!
 
 
?? ?? 0
= 1 = 
?? ?? ?? 
?? ?? 1
= ?? 
 
?? ?? ?? = 
?? ?? ?? -?? ; 0 = ?? = ?? 
  
 
 
Note: 
 (i) ?? is the exponent or index of binomial 
(ii) Total number of terms is ?? + 1 
(iii) The (?? + 1)
?? h
 term = ?? ?? +1
= 
?? ?? ?? ?? ?? -?? ?? ?? 
(iv) Sum of exponents of ?? and ?? in any term = ?? 
(v) Powers of ?? decreasing by 1 and powers of ?? increasing by 1 in subsequent terms 
(vi) In any term suffix of binomial coefficient is power of ?? 
(a) Replacing ?? with -?? in the expansion of (?? + ?? )
?? , we get 
(?? - ?? )
?? = 
?? ?? 0
?? ?? - 
?? ?? 1
?? ?? -1
?? + 
?? ?? 2
?? ?? -2
?? 2
- ? + (-1)
?? 
?? ?? ?? ?? ?? 
(b) Replacing ?? by 1 and ?? with ?? , we get 
(1 + ?? )
?? = 
?? ?? 0
+ 
?? ?? 1
?? + 
?? ?? 2
?? 2
+ ? … + 
?? ?? ?? ?? ?? 
(c) (1 - ?? )
?? = 
?? ?? 0
- 
?? ?? 1
?? = 
?? ?? 2
?? 2
- ? … + (-1)
?? 
?? ?? ?? ?? ?? 
(d) (?? + ?? )
?? + (?? - ?? )
?? = 2[ 
?? ?? 0
?? ?? + 
?? ?? 2
?? ?? -2
?? 2
+ ? … ] 
= 2[ Sum of terms at odd places ] 
last term  
?? ?? ?? ?? ?? if ?? is even and  
?? ?? ?? -1
?? ?? ?? -1
 if ?? is odd 
(e) (?? + ?? )
?? - (?? - ?? )
?? = 2 [Sum of terms at even places] last term  
?? ?? ?? -1
?? ?? ?? -1
 if ?? is even and 
 
?? ?? ?? ?? ?? if ?? is odd 
 
Page 4


 
 
 
 
 
 
 
BINOMIAL EXPRESSION 
An algebraic expression containing only two terms is called a binomial expression. Such as ?? + ?? , 2?? +
5?? , 2?? +
1
?? , ?? +
?? ?? etc. all are binomial expressions. 
  
 
 
 
 
BINOMIAL THEOREM FOR POSITIVE 
INTEGRAL INDEX 
If ?? , ?? ? ?? , then ??? ? ?? 
(?? + ?? )
?? = 
?? ?? 0
?? ?? + 
?? ?? 1
?? ?? -1
?? + 
?? ?? 2
?? ?? -2
?? 2
+ ? + 
?? ?? ?? ?? ?? -?? ?? ?? + ? + 
?? ?? ?? ?? ?? 
Here all  
?? ?? ?? are called binomial coefficient 
 
?? ?? ?? =
?? !
?? ! (?? - ?? )!
 
 
?? ?? 0
= 1 = 
?? ?? ?? 
?? ?? 1
= ?? 
 
?? ?? ?? = 
?? ?? ?? -?? ; 0 = ?? = ?? 
  
 
 
Note: 
 (i) ?? is the exponent or index of binomial 
(ii) Total number of terms is ?? + 1 
(iii) The (?? + 1)
?? h
 term = ?? ?? +1
= 
?? ?? ?? ?? ?? -?? ?? ?? 
(iv) Sum of exponents of ?? and ?? in any term = ?? 
(v) Powers of ?? decreasing by 1 and powers of ?? increasing by 1 in subsequent terms 
(vi) In any term suffix of binomial coefficient is power of ?? 
(a) Replacing ?? with -?? in the expansion of (?? + ?? )
?? , we get 
(?? - ?? )
?? = 
?? ?? 0
?? ?? - 
?? ?? 1
?? ?? -1
?? + 
?? ?? 2
?? ?? -2
?? 2
- ? + (-1)
?? 
?? ?? ?? ?? ?? 
(b) Replacing ?? by 1 and ?? with ?? , we get 
(1 + ?? )
?? = 
?? ?? 0
+ 
?? ?? 1
?? + 
?? ?? 2
?? 2
+ ? … + 
?? ?? ?? ?? ?? 
(c) (1 - ?? )
?? = 
?? ?? 0
- 
?? ?? 1
?? = 
?? ?? 2
?? 2
- ? … + (-1)
?? 
?? ?? ?? ?? ?? 
(d) (?? + ?? )
?? + (?? - ?? )
?? = 2[ 
?? ?? 0
?? ?? + 
?? ?? 2
?? ?? -2
?? 2
+ ? … ] 
= 2[ Sum of terms at odd places ] 
last term  
?? ?? ?? ?? ?? if ?? is even and  
?? ?? ?? -1
?? ?? ?? -1
 if ?? is odd 
(e) (?? + ?? )
?? - (?? - ?? )
?? = 2 [Sum of terms at even places] last term  
?? ?? ?? -1
?? ?? ?? -1
 if ?? is even and 
 
?? ?? ?? ?? ?? if ?? is odd 
 
 
 
 
 
 
General term in the expansion of (?? + ?? )
?? 
The (?? + 1)
th 
 term = ?? ?? +1
 is called the general term. 
?? ?? +1
= 
?? ?? ?? ?? ?? -?? ?? ?? 
  
Page 5


 
 
 
 
 
 
 
BINOMIAL EXPRESSION 
An algebraic expression containing only two terms is called a binomial expression. Such as ?? + ?? , 2?? +
5?? , 2?? +
1
?? , ?? +
?? ?? etc. all are binomial expressions. 
  
 
 
 
 
BINOMIAL THEOREM FOR POSITIVE 
INTEGRAL INDEX 
If ?? , ?? ? ?? , then ??? ? ?? 
(?? + ?? )
?? = 
?? ?? 0
?? ?? + 
?? ?? 1
?? ?? -1
?? + 
?? ?? 2
?? ?? -2
?? 2
+ ? + 
?? ?? ?? ?? ?? -?? ?? ?? + ? + 
?? ?? ?? ?? ?? 
Here all  
?? ?? ?? are called binomial coefficient 
 
?? ?? ?? =
?? !
?? ! (?? - ?? )!
 
 
?? ?? 0
= 1 = 
?? ?? ?? 
?? ?? 1
= ?? 
 
?? ?? ?? = 
?? ?? ?? -?? ; 0 = ?? = ?? 
  
 
 
Note: 
 (i) ?? is the exponent or index of binomial 
(ii) Total number of terms is ?? + 1 
(iii) The (?? + 1)
?? h
 term = ?? ?? +1
= 
?? ?? ?? ?? ?? -?? ?? ?? 
(iv) Sum of exponents of ?? and ?? in any term = ?? 
(v) Powers of ?? decreasing by 1 and powers of ?? increasing by 1 in subsequent terms 
(vi) In any term suffix of binomial coefficient is power of ?? 
(a) Replacing ?? with -?? in the expansion of (?? + ?? )
?? , we get 
(?? - ?? )
?? = 
?? ?? 0
?? ?? - 
?? ?? 1
?? ?? -1
?? + 
?? ?? 2
?? ?? -2
?? 2
- ? + (-1)
?? 
?? ?? ?? ?? ?? 
(b) Replacing ?? by 1 and ?? with ?? , we get 
(1 + ?? )
?? = 
?? ?? 0
+ 
?? ?? 1
?? + 
?? ?? 2
?? 2
+ ? … + 
?? ?? ?? ?? ?? 
(c) (1 - ?? )
?? = 
?? ?? 0
- 
?? ?? 1
?? = 
?? ?? 2
?? 2
- ? … + (-1)
?? 
?? ?? ?? ?? ?? 
(d) (?? + ?? )
?? + (?? - ?? )
?? = 2[ 
?? ?? 0
?? ?? + 
?? ?? 2
?? ?? -2
?? 2
+ ? … ] 
= 2[ Sum of terms at odd places ] 
last term  
?? ?? ?? ?? ?? if ?? is even and  
?? ?? ?? -1
?? ?? ?? -1
 if ?? is odd 
(e) (?? + ?? )
?? - (?? - ?? )
?? = 2 [Sum of terms at even places] last term  
?? ?? ?? -1
?? ?? ?? -1
 if ?? is even and 
 
?? ?? ?? ?? ?? if ?? is odd 
 
 
 
 
 
 
General term in the expansion of (?? + ?? )
?? 
The (?? + 1)
th 
 term = ?? ?? +1
 is called the general term. 
?? ?? +1
= 
?? ?? ?? ?? ?? -?? ?? ?? 
  
 
 
Middle term in the expansion of (?? + ?? )
?? 
Case 1. ?? = ?? ?? ; ?? ? ?? 
Then, number of terms in the expansion = ?? + 1 = 2?? + 1; 
Thus middle term is ?? ?? +1
 
i.e. (
?? 2
+ 1)
?? h
 term 
?? ?? +1
= 
?? ?? ?? 2
?? ?? 2
· ?? ?? 2
 
Case 2. ?? = ?? ?? + ?? ; ?? ? ?? 
Then, number of terms in the expansion = ?? + 1 = 2?? + 2. 
There are two middle terms, viz. ?? ?? +1
 and ?? ?? +2
. 
i.e. (
?? +1
2
)
?? h
 and (
?? +3
2
)
?? h
 term 
?? ?? +1
= 
?? ?? ?? -1
2
· ?? ?? +1
2
· ?? ?? -1
2
?? ?? +2
= 
?? ?? ?? +1
2
· ?? ?? -1
2
· ?? ?? +1
2
 
  
Read More
209 videos|443 docs|143 tests

Top Courses for JEE

209 videos|443 docs|143 tests
Download as PDF
Explore Courses for JEE exam

Top Courses for JEE

Signup for Free!
Signup to see your scores go up within 7 days! Learn & Practice with 1000+ FREE Notes, Videos & Tests.
10M+ students study on EduRev
Related Searches

Extra Questions

,

past year papers

,

practice quizzes

,

Viva Questions

,

Summary

,

video lectures

,

Sample Paper

,

Semester Notes

,

shortcuts and tricks

,

Exam

,

MCQs

,

Previous Year Questions with Solutions

,

Objective type Questions

,

Flashcards: Binomial Theorem & its Simple Applications | Mathematics (Maths) for JEE Main & Advanced

,

Free

,

ppt

,

mock tests for examination

,

study material

,

Flashcards: Binomial Theorem & its Simple Applications | Mathematics (Maths) for JEE Main & Advanced

,

pdf

,

Flashcards: Binomial Theorem & its Simple Applications | Mathematics (Maths) for JEE Main & Advanced

,

Important questions

;