JEE Exam  >  JEE Notes  >  Mathematics (Maths) for JEE Main & Advanced  >  Flashcards: Definite Integrals

Flashcards: Definite Integrals | Mathematics (Maths) for JEE Main & Advanced PDF Download

Download, print and study this document offline
Please wait while the PDF view is loading
 Page 1


 
 
 
 
 
DEFINITE INTEGRAL 
Here we shall define integration as a process of summation or define integral as the limit of a sum. Then 
we discuss some properties of definite integral. The concept of definite integral is then used to find the 
area enclosed by certain curves. 
  
Page 2


 
 
 
 
 
DEFINITE INTEGRAL 
Here we shall define integration as a process of summation or define integral as the limit of a sum. Then 
we discuss some properties of definite integral. The concept of definite integral is then used to find the 
area enclosed by certain curves. 
  
 
 
 
 
 
Fundamental theorem of calculus 
Let ?? ( ?? ) be a continuous real valued function defined on [ ?? , ?? ] such that ? ?? ( ?? ) ???? = ?? ( ?? ) + ?? . 
Then ?
?? ?? ? ?? ( ?? ) ???? = ?? ( ?? ) - ?? ( ?? ), called definite integral of ?? ( ?? ) in [ ?? , ?? ]. 
  
Page 3


 
 
 
 
 
DEFINITE INTEGRAL 
Here we shall define integration as a process of summation or define integral as the limit of a sum. Then 
we discuss some properties of definite integral. The concept of definite integral is then used to find the 
area enclosed by certain curves. 
  
 
 
 
 
 
Fundamental theorem of calculus 
Let ?? ( ?? ) be a continuous real valued function defined on [ ?? , ?? ] such that ? ?? ( ?? ) ???? = ?? ( ?? ) + ?? . 
Then ?
?? ?? ? ?? ( ?? ) ???? = ?? ( ?? ) - ?? ( ?? ), called definite integral of ?? ( ?? ) in [ ?? , ?? ]. 
  
 
 
 
 
Remark: 
1 If ?? ( ?? ) is discontinuous at ?? = ?? and continuous at ?? = ?? then ?
?? ?? ? ?? ( ?? )???? = ?? ( ?? ) - l im
?? ? ?? + ? ?? ( ?? ) 
2 If ?? ( ?? ) is discontinuous at ?? = ?? and continuous at ?? = ?? then ?
?? ?? ? ?? ( ?? )???? = l im
?? ? ?? - ? ?? ( ?? ) - ?? ( ?? ) 
  
Page 4


 
 
 
 
 
DEFINITE INTEGRAL 
Here we shall define integration as a process of summation or define integral as the limit of a sum. Then 
we discuss some properties of definite integral. The concept of definite integral is then used to find the 
area enclosed by certain curves. 
  
 
 
 
 
 
Fundamental theorem of calculus 
Let ?? ( ?? ) be a continuous real valued function defined on [ ?? , ?? ] such that ? ?? ( ?? ) ???? = ?? ( ?? ) + ?? . 
Then ?
?? ?? ? ?? ( ?? ) ???? = ?? ( ?? ) - ?? ( ?? ), called definite integral of ?? ( ?? ) in [ ?? , ?? ]. 
  
 
 
 
 
Remark: 
1 If ?? ( ?? ) is discontinuous at ?? = ?? and continuous at ?? = ?? then ?
?? ?? ? ?? ( ?? )???? = ?? ( ?? ) - l im
?? ? ?? + ? ?? ( ?? ) 
2 If ?? ( ?? ) is discontinuous at ?? = ?? and continuous at ?? = ?? then ?
?? ?? ? ?? ( ?? )???? = l im
?? ? ?? - ? ?? ( ?? ) - ?? ( ?? ) 
  
 
 
 
 
Remark: 
3. If ?? ( ?? ) is discontinuous at ?? = ?? and ?? = ?? then ?
?? ?? ? ?? ( ?? ) ???? = l im
?? ? 0
? ?
?? + ?? ?? - ?? ? ?? ( ?? )???? or l im
?? ? ?? - ? ?? ( ?? ) -
l im
?? ? ?? + ? ?? ( ?? ) 
4. If ?? ( ?? ) is discontinuous at ?? = ?? ( ?? < ?? < ?? ) then ?
?? ?? ? ?? ( ?? )???? = l im
?? ? 0
? ?
?? ?? - ?? ? ?? ( ?? )???? + l im
?? ? 0
? ?
?? + ?? ?? ? ?? ( ?? ) ???? 
  
Page 5


 
 
 
 
 
DEFINITE INTEGRAL 
Here we shall define integration as a process of summation or define integral as the limit of a sum. Then 
we discuss some properties of definite integral. The concept of definite integral is then used to find the 
area enclosed by certain curves. 
  
 
 
 
 
 
Fundamental theorem of calculus 
Let ?? ( ?? ) be a continuous real valued function defined on [ ?? , ?? ] such that ? ?? ( ?? ) ???? = ?? ( ?? ) + ?? . 
Then ?
?? ?? ? ?? ( ?? ) ???? = ?? ( ?? ) - ?? ( ?? ), called definite integral of ?? ( ?? ) in [ ?? , ?? ]. 
  
 
 
 
 
Remark: 
1 If ?? ( ?? ) is discontinuous at ?? = ?? and continuous at ?? = ?? then ?
?? ?? ? ?? ( ?? )???? = ?? ( ?? ) - l im
?? ? ?? + ? ?? ( ?? ) 
2 If ?? ( ?? ) is discontinuous at ?? = ?? and continuous at ?? = ?? then ?
?? ?? ? ?? ( ?? )???? = l im
?? ? ?? - ? ?? ( ?? ) - ?? ( ?? ) 
  
 
 
 
 
Remark: 
3. If ?? ( ?? ) is discontinuous at ?? = ?? and ?? = ?? then ?
?? ?? ? ?? ( ?? ) ???? = l im
?? ? 0
? ?
?? + ?? ?? - ?? ? ?? ( ?? )???? or l im
?? ? ?? - ? ?? ( ?? ) -
l im
?? ? ?? + ? ?? ( ?? ) 
4. If ?? ( ?? ) is discontinuous at ?? = ?? ( ?? < ?? < ?? ) then ?
?? ?? ? ?? ( ?? )???? = l im
?? ? 0
? ?
?? ?? - ?? ? ?? ( ?? )???? + l im
?? ? 0
? ?
?? + ?? ?? ? ?? ( ?? ) ???? 
  
 
 
 
 
 
 
Note that even if ?? ( ?? ) is not defined at ?? = ?? or ?? = ?? or at both, ?
?? ?? ? ?? ( ?? )???? can be evaluated. ?? and ?? 
are called lower and upper limits of integration respectively. If we make change in variable (i.e. 
substitution) then limit of integration should be changed accordingly. 
  
Read More
176 videos|582 docs|160 tests
Related Searches

Flashcards: Definite Integrals | Mathematics (Maths) for JEE Main & Advanced

,

shortcuts and tricks

,

mock tests for examination

,

Exam

,

Extra Questions

,

practice quizzes

,

Flashcards: Definite Integrals | Mathematics (Maths) for JEE Main & Advanced

,

Previous Year Questions with Solutions

,

Viva Questions

,

MCQs

,

Semester Notes

,

past year papers

,

Sample Paper

,

Important questions

,

study material

,

video lectures

,

Flashcards: Definite Integrals | Mathematics (Maths) for JEE Main & Advanced

,

Summary

,

Free

,

pdf

,

Objective type Questions

,

ppt

;