JEE Exam  >  JEE Notes  >  Mathematics (Maths) for JEE Main & Advanced  >  Vector Algebra Solved Examples

Vector Algebra Solved Examples | Mathematics (Maths) for JEE Main & Advanced PDF Download

Download, print and study this document offline
Please wait while the PDF view is loading
 Page 1


Solved Examples on Vector Algebra 
JEE Mains 
Q1.  The length of longer diagonal of the parallelogram constructed on ???? + ???? 
and ?? - ???? , it is given that |?? | = ?? v?? ,|?? | = ?? and angle between ?? and ?? is 
?? ?? , is 
(a) 15 
(b) v?????? 
(c) v?????? 
(d) v?????? 
Ans: (c) Length of the two diagonals will be ?? 1
= (5?? + 2?? )+ (?? - 3?? ) | and ?? 2
? (5?? +
2?? )- (?? - 3?? ) | ? ?? 1
? 6?? - ?? |,?? 2
? 4?? + 5?? | 
Thus, ?? 1
= v6?? |
2
+ | - ?? |
2
+ 2|6?? || - ?? |cos?(?? - ?? /4) =
v36(2v2)
2
+ 9 + 12· 2v2· 3 · (-
1
v2
) = 15. 
?? 2
= v4?? |
2
+ |5?? |
2
+ 2|4?? ||5?? |cos?
?? 4
= v16× 8 + 25× 9 + 40× 2v2× 3 ×
1
v2
= v593. 
? Length of the longer diagonal = v593 
Q.?? The vector ?? , directed along the internal bisector of the angle between the 
vectors ?? = ???? - ???? - ???? and ?? = -???? - ?? + ???? with |?? | = ?? v?? , is 
(a) 
?? ?? (?? - ???? + ???? ) 
(b) 
?? ?? (???? + ???? + ???? ) 
(c) 
?? ?? (?? + ???? + ???? ) 
(d) 
?? ?? (-???? + ???? + ???? ) 
Ans: (a) Let ?? = 7?? - 4?? - 4?? and ?? = -2?? - ?? + 2?? 
Now required vector ?? = ?? (
?? |?? |
+
?? |?? |
) = ?? (
7?? -4?? -4?? 9
+
-2?? -?? +2?? 3
) =
?? 9
(?? - 7?? + 2?? ) 
|?? |
2
=
?? 2
81
× 54 = 150? ?? = ±15 ? ?? = ±
5
3
(?? - 7?? + 2?? ) 
Q3. The position vectors of the vertices ?? ,?? ,?? of a triangle are ?? - ?? - ???? ,???? + ?? - ???? 
and -???? + ???? - ???? respectively. The length of the bisector ???? of the angle ?????? 
where ?? is on the segment ???? , is 
(a) 
?? ?? v???? 
(b) 
?? ?? 
(c) 
????
?? 
(d) None of these 
Ans: (a) 
Page 2


Solved Examples on Vector Algebra 
JEE Mains 
Q1.  The length of longer diagonal of the parallelogram constructed on ???? + ???? 
and ?? - ???? , it is given that |?? | = ?? v?? ,|?? | = ?? and angle between ?? and ?? is 
?? ?? , is 
(a) 15 
(b) v?????? 
(c) v?????? 
(d) v?????? 
Ans: (c) Length of the two diagonals will be ?? 1
= (5?? + 2?? )+ (?? - 3?? ) | and ?? 2
? (5?? +
2?? )- (?? - 3?? ) | ? ?? 1
? 6?? - ?? |,?? 2
? 4?? + 5?? | 
Thus, ?? 1
= v6?? |
2
+ | - ?? |
2
+ 2|6?? || - ?? |cos?(?? - ?? /4) =
v36(2v2)
2
+ 9 + 12· 2v2· 3 · (-
1
v2
) = 15. 
?? 2
= v4?? |
2
+ |5?? |
2
+ 2|4?? ||5?? |cos?
?? 4
= v16× 8 + 25× 9 + 40× 2v2× 3 ×
1
v2
= v593. 
? Length of the longer diagonal = v593 
Q.?? The vector ?? , directed along the internal bisector of the angle between the 
vectors ?? = ???? - ???? - ???? and ?? = -???? - ?? + ???? with |?? | = ?? v?? , is 
(a) 
?? ?? (?? - ???? + ???? ) 
(b) 
?? ?? (???? + ???? + ???? ) 
(c) 
?? ?? (?? + ???? + ???? ) 
(d) 
?? ?? (-???? + ???? + ???? ) 
Ans: (a) Let ?? = 7?? - 4?? - 4?? and ?? = -2?? - ?? + 2?? 
Now required vector ?? = ?? (
?? |?? |
+
?? |?? |
) = ?? (
7?? -4?? -4?? 9
+
-2?? -?? +2?? 3
) =
?? 9
(?? - 7?? + 2?? ) 
|?? |
2
=
?? 2
81
× 54 = 150? ?? = ±15 ? ?? = ±
5
3
(?? - 7?? + 2?? ) 
Q3. The position vectors of the vertices ?? ,?? ,?? of a triangle are ?? - ?? - ???? ,???? + ?? - ???? 
and -???? + ???? - ???? respectively. The length of the bisector ???? of the angle ?????? 
where ?? is on the segment ???? , is 
(a) 
?? ?? v???? 
(b) 
?? ?? 
(c) 
????
?? 
(d) None of these 
Ans: (a) 
 
?|????
???? 
| = |(2?? + ?? - 2?? ) - (?? - ?? - 3?? )| = |?? + 2?? + ?? | = v1
2
+ 2
2
+ 1
2
= v6
|????
???? 
| = |(-5?? + 2?? - 6?? ) - (?? - ?? - 3?? )| = | - 6??ˆ + 3??ˆ - 3?? ˆ
| = v(-6)
2
+ 3
2
+ (-3)
2
? = v54 = 3v6.
???? : ???? = ???? : ???? =
v6
3v6
=
1
3
.
?? ? Position vector of ?? =
1. (-5?? + 2?? - 6?? ) + 3(2?? + ?? - 2?? )
1 + 3
=
1
4
(?? + 5?? - 12?? )
?? ????
???? 
= position vector of ?? - Position vector of ?? =
1
4
(?? + 5?? - 12?? ) - (?? - ?? - 3?? ) =
1
4
(-3?? + 9?? ) =
3
4
(-?? + 3?? )
?|????
???? 
| =
3
4
v(-1)
2
+ 3
2
=
3
4
v10.
 
Q4. The median ???? of the triangle ?????? is bisected at ?? ,???? meets ???? in ?? . Then 
???? :???? = 
(a) ?? /?? 
(b) ?? /?? 
(c) ?? /?? 
(d) ?? /?? 
Ans: (b) Let position vector of ?? with respect to ?? is a and that of ?? w.r.t. ?? ic a 
 
Position vector of ?? w.r.t. ?? =
?? +?? 2
=
?? 2
 
Position vector of ?? =
?? +
?? 2
2
=
?? 2
+
?? 4
 
Let ???? :???? = ?? :1 and ???? :???? = ?? :1 
(0) 
Position vector of ?? =
?? ?? +?? 1+?? 
Now, position vector of ?? =
?? (
?? ?? +?? 1+?? )+1.0
?? +1
 
Page 3


Solved Examples on Vector Algebra 
JEE Mains 
Q1.  The length of longer diagonal of the parallelogram constructed on ???? + ???? 
and ?? - ???? , it is given that |?? | = ?? v?? ,|?? | = ?? and angle between ?? and ?? is 
?? ?? , is 
(a) 15 
(b) v?????? 
(c) v?????? 
(d) v?????? 
Ans: (c) Length of the two diagonals will be ?? 1
= (5?? + 2?? )+ (?? - 3?? ) | and ?? 2
? (5?? +
2?? )- (?? - 3?? ) | ? ?? 1
? 6?? - ?? |,?? 2
? 4?? + 5?? | 
Thus, ?? 1
= v6?? |
2
+ | - ?? |
2
+ 2|6?? || - ?? |cos?(?? - ?? /4) =
v36(2v2)
2
+ 9 + 12· 2v2· 3 · (-
1
v2
) = 15. 
?? 2
= v4?? |
2
+ |5?? |
2
+ 2|4?? ||5?? |cos?
?? 4
= v16× 8 + 25× 9 + 40× 2v2× 3 ×
1
v2
= v593. 
? Length of the longer diagonal = v593 
Q.?? The vector ?? , directed along the internal bisector of the angle between the 
vectors ?? = ???? - ???? - ???? and ?? = -???? - ?? + ???? with |?? | = ?? v?? , is 
(a) 
?? ?? (?? - ???? + ???? ) 
(b) 
?? ?? (???? + ???? + ???? ) 
(c) 
?? ?? (?? + ???? + ???? ) 
(d) 
?? ?? (-???? + ???? + ???? ) 
Ans: (a) Let ?? = 7?? - 4?? - 4?? and ?? = -2?? - ?? + 2?? 
Now required vector ?? = ?? (
?? |?? |
+
?? |?? |
) = ?? (
7?? -4?? -4?? 9
+
-2?? -?? +2?? 3
) =
?? 9
(?? - 7?? + 2?? ) 
|?? |
2
=
?? 2
81
× 54 = 150? ?? = ±15 ? ?? = ±
5
3
(?? - 7?? + 2?? ) 
Q3. The position vectors of the vertices ?? ,?? ,?? of a triangle are ?? - ?? - ???? ,???? + ?? - ???? 
and -???? + ???? - ???? respectively. The length of the bisector ???? of the angle ?????? 
where ?? is on the segment ???? , is 
(a) 
?? ?? v???? 
(b) 
?? ?? 
(c) 
????
?? 
(d) None of these 
Ans: (a) 
 
?|????
???? 
| = |(2?? + ?? - 2?? ) - (?? - ?? - 3?? )| = |?? + 2?? + ?? | = v1
2
+ 2
2
+ 1
2
= v6
|????
???? 
| = |(-5?? + 2?? - 6?? ) - (?? - ?? - 3?? )| = | - 6??ˆ + 3??ˆ - 3?? ˆ
| = v(-6)
2
+ 3
2
+ (-3)
2
? = v54 = 3v6.
???? : ???? = ???? : ???? =
v6
3v6
=
1
3
.
?? ? Position vector of ?? =
1. (-5?? + 2?? - 6?? ) + 3(2?? + ?? - 2?? )
1 + 3
=
1
4
(?? + 5?? - 12?? )
?? ????
???? 
= position vector of ?? - Position vector of ?? =
1
4
(?? + 5?? - 12?? ) - (?? - ?? - 3?? ) =
1
4
(-3?? + 9?? ) =
3
4
(-?? + 3?? )
?|????
???? 
| =
3
4
v(-1)
2
+ 3
2
=
3
4
v10.
 
Q4. The median ???? of the triangle ?????? is bisected at ?? ,???? meets ???? in ?? . Then 
???? :???? = 
(a) ?? /?? 
(b) ?? /?? 
(c) ?? /?? 
(d) ?? /?? 
Ans: (b) Let position vector of ?? with respect to ?? is a and that of ?? w.r.t. ?? ic a 
 
Position vector of ?? w.r.t. ?? =
?? +?? 2
=
?? 2
 
Position vector of ?? =
?? +
?? 2
2
=
?? 2
+
?? 4
 
Let ???? :???? = ?? :1 and ???? :???? = ?? :1 
(0) 
Position vector of ?? =
?? ?? +?? 1+?? 
Now, position vector of ?? =
?? (
?? ?? +?? 1+?? )+1.0
?? +1
 
?? 2
+
?? 4
=
?? (1+ ?? )(1+ ?? )
?? +
????
(1+ ?? )(1+ ?? )
?? ? ?
1
2
=
?? (1+ ?? )(1+ ?? )
 and 
1
4
=
????
(1+ ?? )(1+ ?? )
? ?? =
1
2
,?
????
????
=
????
???? + ????
=
?? 1+ ?? =
1
2
3
2
=
1
3
.
 
Q5. The points with position vectors ?????? + ???? ,?????? - ???? ,?? ?? - ?????? are collinear, if ?? = 
(a) -40 
(b) 40 
(c) 20 
(d) None of these 
Ans: (a) As the three points are collinear, ?? (60?? + 3?? )+ ?? (40?? - 8?? )+ ?? (?? ?? - 52?? ) = 0 such 
that ?? ,?? ,?? are not all zero and ?? + ?? + ?? = 0. 
?? (60?? + 40?? + ???? )?? + (3?? - 8?? - 52?? )?? = 0 and ?? + ?? + ?? = 0
?? 60?? + 40?? + ???? = 0,3?? - 8?? - 52?? = 0 and ?? + ?? + ?? = 0
 
For non-trivial solution, |
60 40 ?? 3 -8 -52
1 1 1
| = 0 ? ?? = -40 
Trick : If ?? ,?? ,?? are given points, then ????
????? 
= ?? (????
????? 
) ? -20?? - 11?? = ?? [(?? - 40)?? - 44?? ] 
On comparing, -11= -44?? ? ?? =
1
4
 and -20 =
1
4
(?? - 40) ? ?? = -40. 
Q6. If the position vectors of ?? ,?? ,?? ,?? are ???? + ?? ,?? - ???? ,???? + ???? and ?? + ?? ?? respectively 
and ????
?????? 
? ????
?????? 
, then ?? will be 
(a) -8 
(b) -6 
(c) 8 
(d) 6 
Ans: (b) 
????
????? 
= (?? - 3?? )- (2?? + ?? ) = -?? - 4?? ;?????
????? 
= (?? + ?? ?? )- (3?? + 2?? ) = -2?? + (?? - 2)?? ;????
????? 
? ????
????? 
? ????
????? 
= ?? ????
????? 
?-?? - 4?? = ?? {-2?? + (?? - 2)?? } ? -1 = -2?? ,-4 = (?? - 2)?? ? ?? =
1
2
,?? = -6.
 
Q7. Let ?? ,?? and ?? be three non-zero vectors such that no two of these are 
collinear. If the vector ?? + ???? is collinear with ?? and ?? + ???? is collinear with ?? ( ?? 
being some non-zero scalar) then ?? + ???? + ???? equals 
(a) 0 
(b) ?? ?? 
(c) ?? ?? 
(d) ?? ?? 
Ans: (a) As ?? + 2?? and ?? are collinear ?? + 2?? = ?? ?? 
Again ?? + 3?? is collinear with ?? 
? ?? + 3?? = ?? ?? 
Now, ?? + 2?? + 6?? = (?? + 2?? )+ 6?? = ?? ?? + 6?? = (?? + 6)?? 
Also, ?? + 2?? + 6?? = ?? + 2(?? + 3?? ) = ?? + 2?? ?? = (2?? + 1)?? ? 
Page 4


Solved Examples on Vector Algebra 
JEE Mains 
Q1.  The length of longer diagonal of the parallelogram constructed on ???? + ???? 
and ?? - ???? , it is given that |?? | = ?? v?? ,|?? | = ?? and angle between ?? and ?? is 
?? ?? , is 
(a) 15 
(b) v?????? 
(c) v?????? 
(d) v?????? 
Ans: (c) Length of the two diagonals will be ?? 1
= (5?? + 2?? )+ (?? - 3?? ) | and ?? 2
? (5?? +
2?? )- (?? - 3?? ) | ? ?? 1
? 6?? - ?? |,?? 2
? 4?? + 5?? | 
Thus, ?? 1
= v6?? |
2
+ | - ?? |
2
+ 2|6?? || - ?? |cos?(?? - ?? /4) =
v36(2v2)
2
+ 9 + 12· 2v2· 3 · (-
1
v2
) = 15. 
?? 2
= v4?? |
2
+ |5?? |
2
+ 2|4?? ||5?? |cos?
?? 4
= v16× 8 + 25× 9 + 40× 2v2× 3 ×
1
v2
= v593. 
? Length of the longer diagonal = v593 
Q.?? The vector ?? , directed along the internal bisector of the angle between the 
vectors ?? = ???? - ???? - ???? and ?? = -???? - ?? + ???? with |?? | = ?? v?? , is 
(a) 
?? ?? (?? - ???? + ???? ) 
(b) 
?? ?? (???? + ???? + ???? ) 
(c) 
?? ?? (?? + ???? + ???? ) 
(d) 
?? ?? (-???? + ???? + ???? ) 
Ans: (a) Let ?? = 7?? - 4?? - 4?? and ?? = -2?? - ?? + 2?? 
Now required vector ?? = ?? (
?? |?? |
+
?? |?? |
) = ?? (
7?? -4?? -4?? 9
+
-2?? -?? +2?? 3
) =
?? 9
(?? - 7?? + 2?? ) 
|?? |
2
=
?? 2
81
× 54 = 150? ?? = ±15 ? ?? = ±
5
3
(?? - 7?? + 2?? ) 
Q3. The position vectors of the vertices ?? ,?? ,?? of a triangle are ?? - ?? - ???? ,???? + ?? - ???? 
and -???? + ???? - ???? respectively. The length of the bisector ???? of the angle ?????? 
where ?? is on the segment ???? , is 
(a) 
?? ?? v???? 
(b) 
?? ?? 
(c) 
????
?? 
(d) None of these 
Ans: (a) 
 
?|????
???? 
| = |(2?? + ?? - 2?? ) - (?? - ?? - 3?? )| = |?? + 2?? + ?? | = v1
2
+ 2
2
+ 1
2
= v6
|????
???? 
| = |(-5?? + 2?? - 6?? ) - (?? - ?? - 3?? )| = | - 6??ˆ + 3??ˆ - 3?? ˆ
| = v(-6)
2
+ 3
2
+ (-3)
2
? = v54 = 3v6.
???? : ???? = ???? : ???? =
v6
3v6
=
1
3
.
?? ? Position vector of ?? =
1. (-5?? + 2?? - 6?? ) + 3(2?? + ?? - 2?? )
1 + 3
=
1
4
(?? + 5?? - 12?? )
?? ????
???? 
= position vector of ?? - Position vector of ?? =
1
4
(?? + 5?? - 12?? ) - (?? - ?? - 3?? ) =
1
4
(-3?? + 9?? ) =
3
4
(-?? + 3?? )
?|????
???? 
| =
3
4
v(-1)
2
+ 3
2
=
3
4
v10.
 
Q4. The median ???? of the triangle ?????? is bisected at ?? ,???? meets ???? in ?? . Then 
???? :???? = 
(a) ?? /?? 
(b) ?? /?? 
(c) ?? /?? 
(d) ?? /?? 
Ans: (b) Let position vector of ?? with respect to ?? is a and that of ?? w.r.t. ?? ic a 
 
Position vector of ?? w.r.t. ?? =
?? +?? 2
=
?? 2
 
Position vector of ?? =
?? +
?? 2
2
=
?? 2
+
?? 4
 
Let ???? :???? = ?? :1 and ???? :???? = ?? :1 
(0) 
Position vector of ?? =
?? ?? +?? 1+?? 
Now, position vector of ?? =
?? (
?? ?? +?? 1+?? )+1.0
?? +1
 
?? 2
+
?? 4
=
?? (1+ ?? )(1+ ?? )
?? +
????
(1+ ?? )(1+ ?? )
?? ? ?
1
2
=
?? (1+ ?? )(1+ ?? )
 and 
1
4
=
????
(1+ ?? )(1+ ?? )
? ?? =
1
2
,?
????
????
=
????
???? + ????
=
?? 1+ ?? =
1
2
3
2
=
1
3
.
 
Q5. The points with position vectors ?????? + ???? ,?????? - ???? ,?? ?? - ?????? are collinear, if ?? = 
(a) -40 
(b) 40 
(c) 20 
(d) None of these 
Ans: (a) As the three points are collinear, ?? (60?? + 3?? )+ ?? (40?? - 8?? )+ ?? (?? ?? - 52?? ) = 0 such 
that ?? ,?? ,?? are not all zero and ?? + ?? + ?? = 0. 
?? (60?? + 40?? + ???? )?? + (3?? - 8?? - 52?? )?? = 0 and ?? + ?? + ?? = 0
?? 60?? + 40?? + ???? = 0,3?? - 8?? - 52?? = 0 and ?? + ?? + ?? = 0
 
For non-trivial solution, |
60 40 ?? 3 -8 -52
1 1 1
| = 0 ? ?? = -40 
Trick : If ?? ,?? ,?? are given points, then ????
????? 
= ?? (????
????? 
) ? -20?? - 11?? = ?? [(?? - 40)?? - 44?? ] 
On comparing, -11= -44?? ? ?? =
1
4
 and -20 =
1
4
(?? - 40) ? ?? = -40. 
Q6. If the position vectors of ?? ,?? ,?? ,?? are ???? + ?? ,?? - ???? ,???? + ???? and ?? + ?? ?? respectively 
and ????
?????? 
? ????
?????? 
, then ?? will be 
(a) -8 
(b) -6 
(c) 8 
(d) 6 
Ans: (b) 
????
????? 
= (?? - 3?? )- (2?? + ?? ) = -?? - 4?? ;?????
????? 
= (?? + ?? ?? )- (3?? + 2?? ) = -2?? + (?? - 2)?? ;????
????? 
? ????
????? 
? ????
????? 
= ?? ????
????? 
?-?? - 4?? = ?? {-2?? + (?? - 2)?? } ? -1 = -2?? ,-4 = (?? - 2)?? ? ?? =
1
2
,?? = -6.
 
Q7. Let ?? ,?? and ?? be three non-zero vectors such that no two of these are 
collinear. If the vector ?? + ???? is collinear with ?? and ?? + ???? is collinear with ?? ( ?? 
being some non-zero scalar) then ?? + ???? + ???? equals 
(a) 0 
(b) ?? ?? 
(c) ?? ?? 
(d) ?? ?? 
Ans: (a) As ?? + 2?? and ?? are collinear ?? + 2?? = ?? ?? 
Again ?? + 3?? is collinear with ?? 
? ?? + 3?? = ?? ?? 
Now, ?? + 2?? + 6?? = (?? + 2?? )+ 6?? = ?? ?? + 6?? = (?? + 6)?? 
Also, ?? + 2?? + 6?? = ?? + 2(?? + 3?? ) = ?? + 2?? ?? = (2?? + 1)?? ? 
 
 
 
Q8. The value of ?? for which the four points ???? + ???? - ?? ,?? + ???? + ???? ,???? + ???? - ???? ,?? -
?? ?? + ???? are coplanar 
(a) 8 
(b) 0 
(c) -2 
(d) 6 
Ans: (c) The given four points are coplanar 
? ?? (2?? + 3?? - ?? )+ ?? (?? + 2?? + 3?? )+ ?? (3?? + 4?? - 2?? )+ ?? (?? - ?? ?? + 6?? ) = ?? and ?? + ?? + ?? + ?? = 0,  
where ?? ,?? ,?? ,?? are not all zero. 
?? ?(2?? + ?? + 3?? + ?? )?? + (3?? + 2?? + 4?? - ???? )?? + (-?? + 3?? - 2?? + 6?? )?? = 0 and ?? + ?? + ?? + ?? = 0
?? ?2?? + ?? + 3?? + ?? = 0,3?? + 2?? + 4?? - ???? = 0,-?? + 3?? - 2?? + 6?? = 0 and ?? + ?? + ?? + ?? = 0
 
For non-trivial solution, |
2 1 3 1
3 2 4 -?? -1 3 -2 6
1 1 1 1
| = 0 ? |
2 1 3 1
0 0 0 -(?? + 2)
-1 3 -2 6
1 1 1 1
| = 0, Operating 
[?? 2
? ?? 2
- ?? 1
- ?? 4
? 
? -(?? + 2)|
2 1 3
-1 3 -2
1 1 1
| = 0 ? ?? = -2.  
Q9. If ?? = ?? + ?? + ?? ,??? = ???? + ???? + ???? and ?? = ?? + ?? ?? + ?? ?? are linearly dependent 
vectors and |?? | = v?? , then  
(a) ?? = ?? ,?? = -?? 
(b) ?? = ?? ,?? = ±?? 
(c) ?? = -?? ,?? = ±?? 
(d) ?? = ±?? ,?? = ?? 
Ans: (d) The given vectors are linearly dependent hence, there exist scalars ?? ,?? ,?? not all 
zero, such that 
?? ?? + ?? ?? + ?? ?? = ?? i.e., ?? (?? + ?? + ?? )+ ?? (4?? + 3?? + 4?? )+ ?? (?? + ?? ?? + ?? ?? )= ?? ,
 i.e., (?? + 4?? + ?? )?? + (?? + 3?? + ???? )?? + (?? + 4?? + ???? )?? = ?? ?? ?? + 4?? + ?? = 0,?? + 3?? + ???? = 0,?? + 4?? + ???? = 0
 
For non-trivial solution, |
1 4 1
1 3 ?? 1 4 ?? | = 0 ? ?? = 1 
|?? |
2
= 3 ? 1+ ?? 2
+ ?? 2
= 3 ? ?? 2
= 2- ?? 2
= 2- 1 = 1;? ? ??? = ±1 
Page 5


Solved Examples on Vector Algebra 
JEE Mains 
Q1.  The length of longer diagonal of the parallelogram constructed on ???? + ???? 
and ?? - ???? , it is given that |?? | = ?? v?? ,|?? | = ?? and angle between ?? and ?? is 
?? ?? , is 
(a) 15 
(b) v?????? 
(c) v?????? 
(d) v?????? 
Ans: (c) Length of the two diagonals will be ?? 1
= (5?? + 2?? )+ (?? - 3?? ) | and ?? 2
? (5?? +
2?? )- (?? - 3?? ) | ? ?? 1
? 6?? - ?? |,?? 2
? 4?? + 5?? | 
Thus, ?? 1
= v6?? |
2
+ | - ?? |
2
+ 2|6?? || - ?? |cos?(?? - ?? /4) =
v36(2v2)
2
+ 9 + 12· 2v2· 3 · (-
1
v2
) = 15. 
?? 2
= v4?? |
2
+ |5?? |
2
+ 2|4?? ||5?? |cos?
?? 4
= v16× 8 + 25× 9 + 40× 2v2× 3 ×
1
v2
= v593. 
? Length of the longer diagonal = v593 
Q.?? The vector ?? , directed along the internal bisector of the angle between the 
vectors ?? = ???? - ???? - ???? and ?? = -???? - ?? + ???? with |?? | = ?? v?? , is 
(a) 
?? ?? (?? - ???? + ???? ) 
(b) 
?? ?? (???? + ???? + ???? ) 
(c) 
?? ?? (?? + ???? + ???? ) 
(d) 
?? ?? (-???? + ???? + ???? ) 
Ans: (a) Let ?? = 7?? - 4?? - 4?? and ?? = -2?? - ?? + 2?? 
Now required vector ?? = ?? (
?? |?? |
+
?? |?? |
) = ?? (
7?? -4?? -4?? 9
+
-2?? -?? +2?? 3
) =
?? 9
(?? - 7?? + 2?? ) 
|?? |
2
=
?? 2
81
× 54 = 150? ?? = ±15 ? ?? = ±
5
3
(?? - 7?? + 2?? ) 
Q3. The position vectors of the vertices ?? ,?? ,?? of a triangle are ?? - ?? - ???? ,???? + ?? - ???? 
and -???? + ???? - ???? respectively. The length of the bisector ???? of the angle ?????? 
where ?? is on the segment ???? , is 
(a) 
?? ?? v???? 
(b) 
?? ?? 
(c) 
????
?? 
(d) None of these 
Ans: (a) 
 
?|????
???? 
| = |(2?? + ?? - 2?? ) - (?? - ?? - 3?? )| = |?? + 2?? + ?? | = v1
2
+ 2
2
+ 1
2
= v6
|????
???? 
| = |(-5?? + 2?? - 6?? ) - (?? - ?? - 3?? )| = | - 6??ˆ + 3??ˆ - 3?? ˆ
| = v(-6)
2
+ 3
2
+ (-3)
2
? = v54 = 3v6.
???? : ???? = ???? : ???? =
v6
3v6
=
1
3
.
?? ? Position vector of ?? =
1. (-5?? + 2?? - 6?? ) + 3(2?? + ?? - 2?? )
1 + 3
=
1
4
(?? + 5?? - 12?? )
?? ????
???? 
= position vector of ?? - Position vector of ?? =
1
4
(?? + 5?? - 12?? ) - (?? - ?? - 3?? ) =
1
4
(-3?? + 9?? ) =
3
4
(-?? + 3?? )
?|????
???? 
| =
3
4
v(-1)
2
+ 3
2
=
3
4
v10.
 
Q4. The median ???? of the triangle ?????? is bisected at ?? ,???? meets ???? in ?? . Then 
???? :???? = 
(a) ?? /?? 
(b) ?? /?? 
(c) ?? /?? 
(d) ?? /?? 
Ans: (b) Let position vector of ?? with respect to ?? is a and that of ?? w.r.t. ?? ic a 
 
Position vector of ?? w.r.t. ?? =
?? +?? 2
=
?? 2
 
Position vector of ?? =
?? +
?? 2
2
=
?? 2
+
?? 4
 
Let ???? :???? = ?? :1 and ???? :???? = ?? :1 
(0) 
Position vector of ?? =
?? ?? +?? 1+?? 
Now, position vector of ?? =
?? (
?? ?? +?? 1+?? )+1.0
?? +1
 
?? 2
+
?? 4
=
?? (1+ ?? )(1+ ?? )
?? +
????
(1+ ?? )(1+ ?? )
?? ? ?
1
2
=
?? (1+ ?? )(1+ ?? )
 and 
1
4
=
????
(1+ ?? )(1+ ?? )
? ?? =
1
2
,?
????
????
=
????
???? + ????
=
?? 1+ ?? =
1
2
3
2
=
1
3
.
 
Q5. The points with position vectors ?????? + ???? ,?????? - ???? ,?? ?? - ?????? are collinear, if ?? = 
(a) -40 
(b) 40 
(c) 20 
(d) None of these 
Ans: (a) As the three points are collinear, ?? (60?? + 3?? )+ ?? (40?? - 8?? )+ ?? (?? ?? - 52?? ) = 0 such 
that ?? ,?? ,?? are not all zero and ?? + ?? + ?? = 0. 
?? (60?? + 40?? + ???? )?? + (3?? - 8?? - 52?? )?? = 0 and ?? + ?? + ?? = 0
?? 60?? + 40?? + ???? = 0,3?? - 8?? - 52?? = 0 and ?? + ?? + ?? = 0
 
For non-trivial solution, |
60 40 ?? 3 -8 -52
1 1 1
| = 0 ? ?? = -40 
Trick : If ?? ,?? ,?? are given points, then ????
????? 
= ?? (????
????? 
) ? -20?? - 11?? = ?? [(?? - 40)?? - 44?? ] 
On comparing, -11= -44?? ? ?? =
1
4
 and -20 =
1
4
(?? - 40) ? ?? = -40. 
Q6. If the position vectors of ?? ,?? ,?? ,?? are ???? + ?? ,?? - ???? ,???? + ???? and ?? + ?? ?? respectively 
and ????
?????? 
? ????
?????? 
, then ?? will be 
(a) -8 
(b) -6 
(c) 8 
(d) 6 
Ans: (b) 
????
????? 
= (?? - 3?? )- (2?? + ?? ) = -?? - 4?? ;?????
????? 
= (?? + ?? ?? )- (3?? + 2?? ) = -2?? + (?? - 2)?? ;????
????? 
? ????
????? 
? ????
????? 
= ?? ????
????? 
?-?? - 4?? = ?? {-2?? + (?? - 2)?? } ? -1 = -2?? ,-4 = (?? - 2)?? ? ?? =
1
2
,?? = -6.
 
Q7. Let ?? ,?? and ?? be three non-zero vectors such that no two of these are 
collinear. If the vector ?? + ???? is collinear with ?? and ?? + ???? is collinear with ?? ( ?? 
being some non-zero scalar) then ?? + ???? + ???? equals 
(a) 0 
(b) ?? ?? 
(c) ?? ?? 
(d) ?? ?? 
Ans: (a) As ?? + 2?? and ?? are collinear ?? + 2?? = ?? ?? 
Again ?? + 3?? is collinear with ?? 
? ?? + 3?? = ?? ?? 
Now, ?? + 2?? + 6?? = (?? + 2?? )+ 6?? = ?? ?? + 6?? = (?? + 6)?? 
Also, ?? + 2?? + 6?? = ?? + 2(?? + 3?? ) = ?? + 2?? ?? = (2?? + 1)?? ? 
 
 
 
Q8. The value of ?? for which the four points ???? + ???? - ?? ,?? + ???? + ???? ,???? + ???? - ???? ,?? -
?? ?? + ???? are coplanar 
(a) 8 
(b) 0 
(c) -2 
(d) 6 
Ans: (c) The given four points are coplanar 
? ?? (2?? + 3?? - ?? )+ ?? (?? + 2?? + 3?? )+ ?? (3?? + 4?? - 2?? )+ ?? (?? - ?? ?? + 6?? ) = ?? and ?? + ?? + ?? + ?? = 0,  
where ?? ,?? ,?? ,?? are not all zero. 
?? ?(2?? + ?? + 3?? + ?? )?? + (3?? + 2?? + 4?? - ???? )?? + (-?? + 3?? - 2?? + 6?? )?? = 0 and ?? + ?? + ?? + ?? = 0
?? ?2?? + ?? + 3?? + ?? = 0,3?? + 2?? + 4?? - ???? = 0,-?? + 3?? - 2?? + 6?? = 0 and ?? + ?? + ?? + ?? = 0
 
For non-trivial solution, |
2 1 3 1
3 2 4 -?? -1 3 -2 6
1 1 1 1
| = 0 ? |
2 1 3 1
0 0 0 -(?? + 2)
-1 3 -2 6
1 1 1 1
| = 0, Operating 
[?? 2
? ?? 2
- ?? 1
- ?? 4
? 
? -(?? + 2)|
2 1 3
-1 3 -2
1 1 1
| = 0 ? ?? = -2.  
Q9. If ?? = ?? + ?? + ?? ,??? = ???? + ???? + ???? and ?? = ?? + ?? ?? + ?? ?? are linearly dependent 
vectors and |?? | = v?? , then  
(a) ?? = ?? ,?? = -?? 
(b) ?? = ?? ,?? = ±?? 
(c) ?? = -?? ,?? = ±?? 
(d) ?? = ±?? ,?? = ?? 
Ans: (d) The given vectors are linearly dependent hence, there exist scalars ?? ,?? ,?? not all 
zero, such that 
?? ?? + ?? ?? + ?? ?? = ?? i.e., ?? (?? + ?? + ?? )+ ?? (4?? + 3?? + 4?? )+ ?? (?? + ?? ?? + ?? ?? )= ?? ,
 i.e., (?? + 4?? + ?? )?? + (?? + 3?? + ???? )?? + (?? + 4?? + ???? )?? = ?? ?? ?? + 4?? + ?? = 0,?? + 3?? + ???? = 0,?? + 4?? + ???? = 0
 
For non-trivial solution, |
1 4 1
1 3 ?? 1 4 ?? | = 0 ? ?? = 1 
|?? |
2
= 3 ? 1+ ?? 2
+ ?? 2
= 3 ? ?? 2
= 2- ?? 2
= 2- 1 = 1;? ? ??? = ±1 
Trick: |?? | = v1 + ?? 2
+ ?? 2
= v3 ? ?? 2
+ ?? 2
= 2 
? ??? ,?? ,?? are linearly dependent, hence |
1 1 1
4 3 4
1 ?? ?? | = 0 ? ?? = 1.  
? ??? 2
= 1 ? ?? = ±1.  
Q10. If |?? | = ?? ,?? |= ?? then a value of ?? for which ?? + ?? ?? is perpendicular to ?? - ?? ?? 
is 
(a) ?? /???? 
(b) ?? /?? 
(c) ?? /?? 
(d) ?? /?? 
Ans: (b) ?? + ?? ?? is perpendicular to ?? - ?? ?? 
? ?(?? + ?? ?? )· (?? - ?? ?? ) = 0 ? |?? |
2
- ?? (?? · ?? )+ ?? (?? · ?? )- ?? 2
|?? |
2
= 0 ? |?? |
2
- ?? 2
|?? |
2
= 0 ? ?? = ±
|?? |
|?? |
= ±
3
4
 
Q11.  The vectors ?? = ?? ?? ?? ?? + ?? ?? ?? + ?? and ?? = ???? - ???? + ?? ?? make an obtuse angle 
whereas the angle between ?? and ?? is acute and less than ?? /?? , then domain of ?? 
is 
(a) ?? < ?? <
?? ?? 
(b) ?? > v?????? 
(c) -
?? ?? < ?? < ?? 
(d) Null set 
Ans: (d) As angle between ?? and ?? is obtuse, ?? .?? < 0 
? (2?? 2
?? + 4?? ?? + ?? )· (7?? - 2?? + ?? ?? ) < 0 ? 14?? 2
- 8?? + ?? < 0 ? ?? (2?? - 1) < 0 ? 0 < ?? <
1
2
 
Angle between ?? and ?? is acute and less than 
?? 6
. 
?? · ?? = |?? | · |?? |cos? ?? ? ?? = v53 + ?? 2
· 1 · cos? ?? ? cos? ?? =
?? v53 + ?? 2
?? <
?? 6
? cos? ?? > cos?
?? 6
? cos? ?? >
v3
2
?
?? v53 + ?? 2
>
v3
2
? 4?? 2
- 3(53 + ?? 2
) > 0 ? ?? 2
> 159 ? ?? < -v159
 
or ?? > v159 
From (i) and (ii), ?? = ?? .? ? Domain of ?? is null set. 
Q12.  If three non-zero vectors are ?? = ?? ?? ?? + ?? ?? ?? + ?? ?? ?? ,?? = ?? ?? ?? + ?? ?? ?? + ?? ?? ?? and ?? =
?? ?? ?? + ?? ?? ?? + ?? ?? ?? . If ?? is the unit vector perpendicular to the vectors ?? and ?? and the 
angle between ?? and ?? is 
?? ?? , then |
?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? |
?? is equal to 
(a) 0 
(b) 
?? (?? ?? ?? ?? )(?? ?? ?? ?? )(?? ?? ?? ?? )
?? 
Read More
209 videos|443 docs|143 tests

Top Courses for JEE

209 videos|443 docs|143 tests
Download as PDF
Explore Courses for JEE exam

Top Courses for JEE

Signup for Free!
Signup to see your scores go up within 7 days! Learn & Practice with 1000+ FREE Notes, Videos & Tests.
10M+ students study on EduRev
Related Searches

Vector Algebra Solved Examples | Mathematics (Maths) for JEE Main & Advanced

,

MCQs

,

ppt

,

video lectures

,

Objective type Questions

,

Sample Paper

,

practice quizzes

,

Extra Questions

,

Semester Notes

,

pdf

,

Viva Questions

,

Important questions

,

Vector Algebra Solved Examples | Mathematics (Maths) for JEE Main & Advanced

,

mock tests for examination

,

past year papers

,

shortcuts and tricks

,

Previous Year Questions with Solutions

,

Free

,

study material

,

Exam

,

Summary

,

Vector Algebra Solved Examples | Mathematics (Maths) for JEE Main & Advanced

;